Volume 22, Issue 9 (September 2022)                   Modares Mechanical Engineering 2022, 22(9): 625-635 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tahvilian E, Iranpour M, Loghmani A. Narrowband active noise control in a duct using FxLMS method based on the AVR microcontroller. Modares Mechanical Engineering 2022; 22 (9) :625-635
URL: http://mme.modares.ac.ir/article-15-61015-en.html
1- Department of Mechanical Engineering, Isfahan University of Technology
2- Department of Mechanical Engineering, Isfahan University of Technology , a.loghmani@iut.ac.ir
Abstract:   (2645 Views)
Low-cost and highly effective noise reduction has recently become one of the substantial challenges for industrial manufacturers. This paper presents the design and construction of a cost-effective system for attenuating single-frequency annoying noise generated from industrial products and machines. To achieve this goal, narrowband active noise control using Filtered-x Least Mean Square (FxLMS) method has been used with the help of a two-factor digital adaptive filter, called the adaptive notch filter. Therefore, a duct structure has been designed and experimental tests have been performed on it. To reduce implementation costs, the Arduino Uno board, which has an AVR microcontroller (ATmega328P), has been used as the controller. About 15dB noise attenuation at 400Hz and 750Hz frequencies and about 30dB noise attenuation at 650Hz and 950Hz frequencies have been achieved. Then, active noise control for two separate and simultaneous frequencies has been performed, which had somewhat effective results, and in one of these frequencies, noise attenuation of about 18dB has been observed.
Full-Text [PDF 1047 kb]   (1466 Downloads)    
Article Type: Original Research | Subject: Control
Received: 2022/04/20 | Accepted: 2022/07/24 | Published: 2022/09/1

References
1. Fink, D., 2019. Ambient Noise Is "The New Secondhand Smoke". The Journal of the Acoustical Society of America, 146(4), pp.2835-2835. [DOI:10.1121/1.5136828]
2. WHO Regional Office for Europe, 2018. What is the evidence on existing policies and linked activities and their effectiveness for improving health literacy at national, regional and organizational levels in the WHO European region?.
3. Peris, E., 2020. Environmental noise in Europe: 2020. Eur. Environ. Agency, 1, p.104.
4. Tao, Y., Ren, M., Zhang, H. and Peijs, T., 2021. Recent progress in acoustic materials and noise control strategies-A review. Applied Materials Today, 24, p.101141. [DOI:10.1016/j.apmt.2021.101141]
5. Zarastvand MR, Asadijafari MH, Talebitooti R. Improvement of the low-frequency sound insulation of the poroelastic aerospace constructions considering Pasternak elastic foundation. Aerospace Science and Technology. 2021 May 1;112:106620. [DOI:10.1016/j.ast.2021.106620]
6. Elliott SJ, Nelson PA. Active noise control. IEEE signal processing magazine. 1993 Oct;10(4):12-35. [DOI:10.1109/79.248551]
7. Kuo SM, Morgan DR. Active noise control: a tutorial review. Proceedings of the IEEE. 1999 Jun;87(6):943-73. [DOI:10.1109/5.763310]
8. Gohari HD, Zarastvand MR, Talebitooti R, Loghmani A, Omidpanah M. Radiated sound control from a smart cylinder subjected to piezoelectric uncertainties based on sliding mode technique using self-adjusting boundary layer. Aerospace Science and Technology. 2020 Nov 1;106:106141. [DOI:10.1016/j.ast.2020.106141]
9. Talebitooti R, Darvish Gohari H, Zarastvand M, Loghmani A. A robust optimum controller for suppressing radiated sound from an intelligent cylinder based on sliding mode method considering piezoelectric uncertainties. Journal of Intelligent Material Systems and Structures. 2019 Dec;30(20):3066-79. [DOI:10.1177/1045389X19873412]
10. Darvishgohari H, Zarastvand M, Talebitooti R, Shahbazi R. Hybrid control technique for vibroacoustic performance analysis of a smart doubly curved sandwich structure considering sensor and actuator layers. Journal of Sandwich Structures & Materials. 2021 Jun;23(5):1453-80. [DOI:10.1177/1099636219896251]
11. Lueg P, inventor. Process of silencing sound oscillations: US, 2043416. 1936.
12. Widrow B. STEARNS, sD:'Adaptive signal processing'.
13. Kuo SM, Morgan DR. Active noise control systems. Wiley, New York; 1996.
14. Morgan D. An analysis of multiple correlation cancellation loops with a filter in the auxiliary path. IEEE Transactions on Acoustics, Speech, and Signal Processing. 1980 Aug;28(4):454-67. [DOI:10.1109/TASSP.1980.1163430]
15. Xiao Y, Ikuta A, Ma L, Khorasani K. Stochastic analysis of the FXLMS-based narrowband active noise control system. IEEE transactions on audio, speech, and language processing. 2008 Apr 30;16(5):1000-14. [DOI:10.1109/TASL.2008.921756]
16. Xiao Y, Ma L, Hasegawa K. Properties of FXLMS-based narrowband active noise control with online secondary-path modeling. IEEE Transactions on Signal Processing. 2009 Apr 10;57(8):2931-49. [DOI:10.1109/TSP.2009.2020766]
17. Wang L, Gan WS. Convergence analysis of narrowband active noise equalizer system under imperfect secondary path estimation. IEEE transactions on audio, speech, and language processing. 2009 Mar 16;17(4):566-71. [DOI:10.1109/TASL.2008.2009018]
18. Samarasinghe PN, Zhang W, Abhayapala TD. Recent advances in active noise control inside automobile cabins: Toward quieter cars. IEEE Signal Processing Magazine. 2016 Nov 4;33(6):61-73. [DOI:10.1109/MSP.2016.2601942]
19. Loiseau P, Chevrel P, Yagoubi M, Duffal JM. Robust active noise control in a car cabin: Evaluation of achievable performances with a feedback control scheme. Control Engineering Practice. 2018 Dec 1;81:172-82. [DOI:10.1016/j.conengprac.2018.09.015]
20. Elliot SJ, Nelson PA, Stothers IM, Boucher CC. In-flight experiments on the active control of propeller-induced cabin noise. Journal of Sound and Vibration. 1990 Jul 22;140(2):219-38. [DOI:10.1016/0022-460X(90)90525-5]
21. Kochan K, Sachau D, Breitbach H. Robust active noise control in the loadmaster area of a military transport aircraft. The Journal of the Acoustical Society of America. 2011 May;129(5):3011-9. [DOI:10.1121/1.3562561]
22. Chang CY, Siswanto A, Ho CY, Yeh TK, Chen YR, Kuo SM. Listening in a noisy environment: Integration of active noise control in audio products. IEEE Consumer Electronics Magazine. 2016 Sep 22;5(4):34-43. [DOI:10.1109/MCE.2016.2590159]
23. Kuo SM, Mitra S, Gan WS. Active noise control system for headphone applications. IEEE Transactions on Control Systems Technology. 2006 Feb 21;14(2):331-5. [DOI:10.1109/TCST.2005.863667]
24. Toochinda V, Hollot CV, Chait Y. On selecting sensor and actuator locations for anc in ducts. InProceedings of the 40th IEEE Conference on Decision and Control (Cat. No. 01CH37228) 2001 Dec 4 (Vol. 3, pp. 2593-2598). IEEE.
25. Sawada Y, Ohsumi A. Active noise control of sound wave in a one-dimensional duct. InProceedings of the 2000 American Control Conference. ACC (IEEE Cat. No. 00CH36334) 2000 Jun 28 (Vol. 5, pp. 3013-3017). IEEE. [DOI:10.1109/ACC.2000.879118]
26. Chen KC, Chang CY, Kuo SM. Active noise control in a duct to cancel broadband noise. InIOP Conference Series: Materials Science and Engineering 2017 Sep 1 (Vol. 237, No. 1, p. 012015). IOP Publishing. [DOI:10.1088/1757-899X/237/1/012015]
27. Zia MK, Ahmed A, Tufail M. A Duct Based Experimental Setup for Active Noise Control. In2014 12th International Conference on Frontiers of Information Technology 2014 Dec 17 (pp. 139-143). IEEE. [DOI:10.1109/FIT.2014.34]
28. Ross CF. An algorithm for designing a broadband active sound control system. Journal of sound and vibration. 1982 Feb 8;80(3):373-80. [DOI:10.1016/0022-460X(82)90278-4]
29. Kuo SM, Panahi I, Chung KM, Horner T, Nadeski M, Chyan J. Design of active noise control systems with the TMS320 family. Texas Instruments. 1996 Jun.
30. Boucher S, Bouchard M, L'esperance A, Paillard B. Implementing a single channel active adaptive noise canceller with the TMS320C50 DSP starter kit. Application report: SPRA285. 1997 Nov.
31. Leva A, Piroddi L. FPGA-based implementation of an active vibration controller. IFAC Proceedings Volumes. 2008 Jan 1;41(2):5077-82. [DOI:10.3182/20080706-5-KR-1001.00853]
32. Ramachandran VR, Panahi IM, Perez E. Active reduction of high-level acoustic noise on a fMRI test-bed using labview and FPGA platforms. In2008 IEEE International Conference on Acoustics, Speech and Signal Processing 2008 Mar 31 (pp. 1517-1520). IEEE. [DOI:10.1109/ICASSP.2008.4517910]
33. Shi D, He J, Shi C, Murao T, Gan WS. Multiple parallel branch with folding architecture for multichannel filtered-x least mean square algorithm. In2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2017 Mar 5 (pp. 1188-1192). IEEE. [DOI:10.1109/ICASSP.2017.7952344]
34. Shi D, Gan WS, He J, Lam B. Practical implementation of multichannel filtered-x least mean square algorithm based on the multiple-parallel-branch with folding architecture for large-scale active noise control. IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 2019 Dec 19;28(4):940-53. [DOI:10.1109/TVLSI.2019.2956524]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.