1. [1] Campa, F.J., López de Lacalle, L.N., Lamikiz, A., Bilbao, E., Calleja, A., Peñafiel, J., "Tool deflection on peripheral milling," NewTech, pp. 170-173, 2009.
2. [2] I.N. Tansel a, *, T.T. Arkan a, W.Y. Bao a, N. Mahendrakar,B. Shisler,D. Smith b,M. McCool, "Tool wear estimation in micro-machining.Part I: tool usage-cutting force relationship," Machine tools & Manufacture, p. 601, 1999. [
DOI:10.1016/S0890-6955(99)00074-7]
۳. [۳] رازفر, رضا جلیلی صفار، محمدرضا, "فرآیند فرزکاری با تیغ فرز انگشتی برای پیش بینی نیروهای ماشینکاری و خطای حاصل از خمش ابزار," ISME, p. ۵, ۲۰۰۷.
4. [4] Nghiep, T. N., Sarhan, A. A., & Aoyama, H, "Analysis of tool deflection errors in precision CNC end milling of aerospace aluminum 6061-T6 alloy," Measurement, pp. 476-495, 2018. [
DOI:10.1016/j.measurement.2018.05.011]
5. [5] Soori, M., Arezoo, B., & Habibi, M., "Tool deflection error of three-axis computer numerical control milling machines, monitoring and minimizing by a virtual machining system," Journal of Manufacturing Science and Engineering,, 2016. [
DOI:10.1115/1.4032393]
6. [6] Kenji Shimana1, Eiji Kondo,Daichi Shigemori,Shunichi Yamashita,Yoshihiro Kawano,Norio Kawagoishi, "An Approach to Compensation of Machining Error Caused by Deflection of End Mill," Procedia CIRP, pp. 677-678, 2012. [
DOI:10.1016/j.procir.2012.05.024]
7. [7] B. Denkena, V. Boess, D. Nespor, F. Rusta, F. Floeter, "Approaches for improving cutting processes and machine tools," Procedia CIRP, p. 242, 2014. [
DOI:10.1016/j.procir.2014.06.148]
8. [8] Xuewei Zhang, Kornel F. Ehmann,Tianbiao Yu, Wanshan Wang, "Cutting forces in micro-end-milling processes," International Journal of Machine Tools & Manufacture, p. 38, 2016. [
DOI:10.1016/j.ijmachtools.2016.04.012]
9. [9] Thomas A. Dow, Edward L. Miller, Kenneth Garrard, "Tool force and deflection compensation for small milling tools," Precision Engineering, p. 31, 2004. [
DOI:10.1016/S0141-6359(03)00072-2]
10. [10] Berend Denkena, Kai Martin Litwinski, Haythem Boujnah, "Detection of tool deflection in milling by a sensory axis slide for machine," Mechatronic, p. 1, 2015. [
DOI:10.1016/j.mechatronics.2015.09.008]
11. [11] Berend Denkena, Dominik Dahlmann,Haythem Boujnah, "Tool deflection control by a sensory spindle slide for milling machine tools," Procedia CIRP, p. 330, 2017. [
DOI:10.1016/j.procir.2016.06.059]
12. [12] Berend Denkena, Haythem Boujnah, "Feeling machines for online detection and compensation of tool," CIRP Annals - Manufacturing Technology, p. 2, 2018. [
DOI:10.1016/j.cirp.2018.04.110]
13. [13] Razfar, R. Jalili Saffar and M. R., "SIMULATION OF END MILLING OPERATION FOR PREDICTING CUTTING FORCES TO MINIMIZE TOOL DEFLECTION BY GENETIC ALGORITHM," Machining Science and Technology, p. 81, 2010. [
DOI:10.1080/10910340903586483]
14. [14] Y. Altintas, O. Tuysuz , M. Habibi , Z.L. Li, "Virtual compensation of deflection errors in ball end milling," CIRP Annals - Manufacturing Technology, p. 4, 2018. [
DOI:10.1016/j.cirp.2018.03.001]
15. [15] Berend Denkena, Benjamin Bergmann, Dennis Stoppel, "Tool deflection compensation by drive signal-based force reconstruction and process control," Procedia CIRP, p. 571, 2021. [
DOI:10.1016/j.procir.2021.11.096]
16. [16] Ferdinand P.Bear, E.Russell johnston,JR.,John T.DeWolf,David F.Mazurek, Mechanics of materials ed.6th, 2003.
17. [17] AZoM, "M2 Molybdenum High Speed Tool Steel," 13 September 2012. [درون خطی]. Available: https://www.azom.com/article.aspx?ArticleID=6174#3.
۱۸. [۱۸] یوسفوند, دکتر سید مهدی رضاعی، دکتر رسول فشارکی فرد، محمد عزیزی, جبران خطای ماشینکاری ناشی از خیز ابزار با مکانیزم سروو, ۲۰۱۸.
19. [19] hssmetal, "HSS M35 HIGH SPEED STEEL," 2021.[Available: https://hssmetal.com/hss-m35.php.
20. [20] "Mass Scale Abaqus," Available: http://www.abaquscenter.com/..
21. [21] Ding-Ni Zhang, Qian-Qian Shangguan, Can-Jun Xie, Fu Liu, "A modified Johnson-Cook model of dynamic tensile behaviors," Alloyes And Compound 2015. . [
DOI:10.1016/j.jallcom.2014.09.002]
22. [22] Nghiep, T. N., Sarhan, A. A., & Aoyama, H., "Analysis of tool deflection errors in precision CNC end milling of aerospace aluminum 6061-T6 alloy," pp. 476-495, 2018. [
DOI:10.1016/j.measurement.2018.05.011]