1. Zhang C, Vyver SVD, Hu X, Lu P. Fatigue crack growth behavior in weld-repaired high-strength low-alloy steel. Engineering Fracture Mechanics. 2011;78(9):1862-1875. [
DOI:10.1016/j.engfracmech.2011.03.004]
2. Drexler ES, Slifka AJ, Amaro RL, Barbosa N, Lauria DS, Hayden LE, Stalheim DG. Fatigue crack growth rates of API X70 pipeline steel in a pressurized hydrogen gas environment. Fatigue & Fracture of Engineering Materials & Structures. 2013;37(5):517-525. [
DOI:10.1111/ffe.12133]
3. Pinheiro B, Pasqualino I, Cunha S. Fatigue life assessment of damaged pipelines under cyclic internal pressure: Pipelines with longitudinal and transverse plain dents. International Journal of Fatigue. 2014;68:38-47. [
DOI:10.1016/j.ijfatigue.2014.06.003]
4. Hong SW, Koo JM, Seok CS, Kim JW, Kim JH, Hong SK. Fatigue life prediction for an API 5L X42 natural gas pipeline. Engineering Failure Analysis. 2015;56:396-402. [
DOI:10.1016/j.engfailanal.2014.12.016]
5. Jallouf S, Capelle J, Pluvinage G. Probabilistic fatigue initiation assessment diagram pipe steel X52: influence of hydrogen. Fatigue & Fracture of Engineering Materials & Structures. 2017;40(8):1260-1266. [
DOI:10.1111/ffe.12636]
6. Hashemi H, Hashemi SH. Investigation of seam weld and steel base metal fracture energy of api x65 pipe using three-point bending experimental. Modares Mechanical Engineering. 2020;20(9):2377-2388.[Persian]
7. Gao Z, Gong B, Xu Q, Wang D, Deng C, Yu Y. High cycle fatigue behaviors of API X65 pipeline steel welded joints in air and H2S solution. International Journal of Hydrogen Energy. 2021;46(17):10423-10437. [
DOI:10.1016/j.ijhydene.2020.12.140]
8. Hashemi SH, Mohammadyani D. Characterisation of weldment hardness, impact energy and microstructure in API X65 steel. International Journal of Pressure Vessels and Piping. 2012;98:8-15. [
DOI:10.1016/j.ijpvp.2012.05.011]
9. Specification for line pipe, API Specification 5L, 45th Edition. USA: American Petroleum Institute; 2013;29-31.
10. Farrahi A, Hashemi SH. Experimental evaluation of fracture toughness in spiral seam weld of thermo-mechanical steel. Journal of Solid and Fluid Mechanics. 2012;2(4):25-35.[Persian]
11. Bandara CS, Siriwardane SC, Dissanayake UI, Dissanayake R. Developing a full range S-N curve and estimating cumulative fatigue damage of steel elements. Computational Materials Science. 2015;96:96-101. [
DOI:10.1016/j.commatsci.2014.09.009]
12. Barbosa JF, Correia JA, Júnior RF, Zhu SP, Jesus AMD. Probabilistic S-N fields based on statistical distributions applied to metallic and composite materials: State of the art. Advances in Mechanical Engineering. 2019;11(8):1-22. [
DOI:10.1177/1687814019870395]
13. Gope PC. Determination of minimum number of specimens in S-N testing. Journal of Engineering Materials and Technology. 2002;124(4):421-427. [
DOI:10.1115/1.1417486]
14. Metallic materials - fatigue testing - Statistical planning and analysis of data. Switzerland: International Organization for Standardization (ISO); 2003.
15. Strzelecki P, Sempruch J, Tomaszewski T. Analysis of selected mathematical models of high-cycle S-N characteristics. Technical Sciences. 2017;20(3):227-240. [
DOI:10.31648/ts.5424]
16. Standard practice for statistical analysis of linear or linearized stress-life (S-N) and strain-life (ε-N) fatigue data. West Conshohocken, United States: ASTM International; 2015.
17. Budynas RG, Nisbett JK. Fatigue failure resulting from variable loading. In: Lange M, editor. Shigley's Mechanical Engineering Design. 9th Edition. New York, USA: McGraw-Hill; 2011;273-295.
18. Bassoli E, Denti L, Comin A, Sola A, Tognoli E. Fatigue behavior of as-built L-PBF A357.0 parts. Metals. 2018;8(8):634-647. [
DOI:10.3390/met8080634]
19. Müller C, Wächter M, Masendorf R, Esderts A. Distribution functions for the linear region of the S-N curve. Materials Testing. 2017;59:625-629. [
DOI:10.3139/120.111053]
20. Wallin K. The probability of success using deterministic reliability. European structural integrity society. 23: Elsevier; 1999;39-50. [
DOI:10.1016/S1566-1369(99)80028-4]
21. Peng Y, Chen J, Dong J. Experimental data assessment and fatigue design recommendation for stainless‐steel welded joints. Metals. 2019;9(7):723-741. [
DOI:10.3390/met9070723]
22. Çalışkan S, Gürbüz R. Determining the endurance limit of AISI 4340 steels in terms of different statistical approaches. Frattura e Integrita Strutturale. 2021;15(58):344-364. [
DOI:10.3221/IGF-ESIS.58.25]
23. Pilkey WD. Peterson's stress concentration factors. 2nd Edition. Canada: John Wiley & Sons, Inc.; 1997;164. [
DOI:10.1002/9780470172674]
24. Alansary YA. Prediction of fatigue crack near-threshold censored regressions with run-out data: University of Akron; 2014;21-22.
25. Farhad F, Zhang X, Smyth-Boyle D. Fatigue behaviour of corrosion pits in X65 steel pipelines. Journal of Mechanical Engineering Science. 2019;233(5):1771-1782. [
DOI:10.1177/0954406218776338]
26. Hanafi ZH, Jamaludin N, Abdullah S, Yusof MF, Zain MS. Acoustic emission study of corrosion fatigue and fatigue for API 5L X70 gas pipeline steel. Applied Mechanics and Materials. 2012;138-139:635-639. [
DOI:10.4028/www.scientific.net/AMM.138-139.635]
27. Zhao ZP, Qiao GY, Tang L, Zhu HW, Liao B, Xiao FR. Fatigue properties of X80 pipeline steels with ferrite/bainite dual-phase microstructure. Materials Science & Engineering A. 2016;657:96-103. [
DOI:10.1016/j.msea.2016.01.043]