Volume 23, Issue 1 (January 2022)                   Modares Mechanical Engineering 2022, 23(1): 1-9 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Najafi A, Zolfaghari A. Fabrication of bone scaffolds by additive manufacturing of fused deposition modeling (FDM) and investigation of their mechanical properties. Modares Mechanical Engineering 2022; 23 (1) :1-9
URL: http://mme.modares.ac.ir/article-15-63036-en.html
1- Master's student, Mechanical Engineering, Noshirvani University of Technology, Babol, Babol
2- Assistant professor of manufacturing department, faculty of mechanical engineering, Babol Noshirvani University of Technology , zolfaghari@nit.ac.ir
Abstract:   (2281 Views)
The use of Additive Manufacturing (AM) techniques in medical science has resulted in a great change in this field, especially in bone tissue engineering. One of these techniques is the Fused Deposition Modeling (FDM) which is used to make bone scaffolds. From view point of bone tissue engineering, bone scaffolds must have acceptable mechanical properties in addition to the required biological properties. In this study, at first the printing parameters including layer height, printing speed and number of filaments in each row were determined and bone scaffolds were made with two different materials polylactic acid (PLA) and polycaprolactone (PCL) and were subjected to the compression tests. The results of Young’s modulus and yield stress analyzed in Design Expert software showed that increasing the layer height reduces the mechanical properties. Also, increasing the number of filaments in each row increases the elastic modulus of the scaffold. For example, for scaffolds made of PLA, the maximum modulus of elasticity belongs to 12 filament scaffolds with a layer height of 0.1, which is equal to 319 MPa, and the minimum elastic modulus belongs to 8 filament scaffolds with a layer height of 0.3, which is equal to 143 MPa. Printing speed for scaffolds made of PLA does not have a significant effect on the Young’s modulus and yield stress. But for scaffolds made of PCL, increasing the printing speed reduces the modulus of elasticity but it doesn’t have a significant effect on yield stress.
Full-Text [PDF 823 kb]   (1630 Downloads)    
Article Type: Original Research | Subject: Build add-on
Received: 2022/07/20 | Accepted: 2022/10/31 | Published: 2022/12/31

References
1. [1] J.-P. Kruth, Material incress manufacturing by rapid prototyping techniques, CIRP annals, Vol. 40, No. 2, pp. 603-614, 1991. [DOI:10.1016/S0007-8506(07)61136-6]
2. [2] T. B. Heller, R. M. Hill, A. F. Saggal, Apparatus for forming a solid three-dimensional article from a liquid medium, Google Patents, 1991.
3. [3] E. Malone, H. Lipson, Fab@ Home: the personal desktop fabricator kit, Rapid Prototyping Journal, 2007. [DOI:10.1108/13552540710776197]
4. [4] C. W. Hull, Apparatus for production of three-dimensional objects by stereolithography, United States Patent, Appl., No. 638905, Filed, 1984.
5. [5] M. Nakamura, S. Iwanaga, C. Henmi, K. Arai, Y. Nishiyama, Biomatrices and biomaterials for future developments of bioprinting and biofabrication, Biofabrication, Vol. 2, No. 1, pp. 014110, 2010. [DOI:10.1088/1758-5082/2/1/014110]
6. [6] R. Bracci, E. Maccaroni, S. Cascinu, Bioresorbable airway splint created with a three-dimensional printer, New England Journal of Medicine, Vol. 368, No. 21, pp. 2043-5, 2013. [DOI:10.1056/NEJMc1206319]
7. [7] T. Adachi, Y. Osako, M. Tanaka, M. Hojo, S. J. Hollister, Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration, Biomaterials, Vol. 27, No. 21, pp. 3964-3972, 2006. [DOI:10.1016/j.biomaterials.2006.02.039]
8. [8] B. Sepehri, A. Asadi, Analysis of Fracture Modes in Cortical bone Using Optimized Arcan's Device, Modares Mechanical Engineering, Vol. 15, No. 4, 2015.
9. [9] Q. Fu, E. Saiz, M. N. Rahaman, A. P. Tomsia, Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives, Materials Science and Engineering: C, Vol. 31, No. 7, pp. 1245-1256, 2011. [DOI:10.1016/j.msec.2011.04.022]
10. [10] P. V. Giannoudis, H. Dinopoulos, E. Tsiridis, Bone substitutes: an update, Injury, Vol. 36, No. 3, pp. S20-S27, 2005. [DOI:10.1016/j.injury.2005.07.029]
11. [11] R. P. Sari, S. A. Sudjarwo, R. P. Rahayu, W. Prananingrum, S. Revianti, H. Kurniawan, A. F. Bachmid, The effects of Anadara granosa shell-Stichopus hermanni on bFGF expressions and blood vessel counts in the bone defect healing process of Wistar rats, Dental Journal (Majalah Kedokteran Gigi), Vol. 50, No. 4, pp. 194-198, 2017. [DOI:10.20473/j.djmkg.v50.i4.p194-198]
12. [12] S. Naghieh, M. K. Ravari, M. Badrossamay, E. Foroozmehr, M. Kadkhodaei, Finite element analysis for predicting the mechanical properties of bone scaffolds fabricated by fused deposition modeling (FDM), in Proceeding of, 450-454.
13. [13] ایمانی, س. میثاق, ربیعی, س. محمود, م. گودرزی, علی, دردل, بررسی رفتار مکانیکی داربست های متخلخل بکار رفته در مهندسی بافت استخوان با استفاده از مدل سازی میکرومکانیکی, مهندسی مکانیک مدرس, Vol. 17, No. 9, pp. 397-408, 2017.
14. [14] S. C. Cox, J. A. Thornby, G. J. Gibbons, M. A. Williams, K. K. Mallick, 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications, Materials Science and Engineering: C, Vol. 47, pp. 237-247, 2015. [DOI:10.1016/j.msec.2014.11.024]
15. [15] V. Mironov, T. Boland, T. Trusk, G. Forgacs, R. R. Markwald, Organ printing: computer-aided jet-based 3D tissue engineering, TRENDS in Biotechnology, Vol. 21, No. 4, pp. 157-161, 2003. [DOI:10.1016/S0167-7799(03)00033-7]
16. [16] D. W. Hutmacher, M. Sittinger, M. V. Risbud, Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems, TRENDS in Biotechnology, Vol. 22, No. 7, pp. 354-362, 2004. [DOI:10.1016/j.tibtech.2004.05.005]
17. [17] C. Dong, Y. Lv, Application of collagen scaffold in tissue engineering: recent advances and new perspectives, Polymers, Vol. 8, No. 2, pp. 42, 2016. [DOI:10.3390/polym8020042]
18. [18] T. W. Gilbert, T. L. Sellaro, S. F. Badylak, Decellularization of tissues and organs, Biomaterials, Vol. 27, No. 19, pp. 3675-3683, 2006. [DOI:10.1016/j.biomaterials.2006.02.014]
19. [19] P. A. Gunatillake, R. Adhikari, N. Gadegaard, Biodegradable synthetic polymers for tissue engineering, Eur Cell Mater, Vol. 5, No. 1, pp. 1-16, 2003. [DOI:10.22203/eCM.v005a01]
20. [20] S. H. Park, D. S. Park, J. W. Shin, Y. G. Kang, H. K. Kim, T. R. Yoon, J.-W. Shin, Scaffolds for bone tissue engineering fabricated from two different materials by the rapid prototyping technique: PCL versus PLGA, Journal of Materials Science: Materials in Medicine, Vol. 23, No. 11, pp. 2671-2678, 2012. [DOI:10.1007/s10856-012-4738-8]
21. [21] L. Polo-Corrales, M. Latorre-Esteves, J. E. Ramirez-Vick, Scaffold design for bone regeneration, Journal of nanoscience and nanotechnology, Vol. 14, No. 1, pp. 15-56, 2014. [DOI:10.1166/jnn.2014.9127]
22. [22] S. Ramtani, Mechanical modelling of cell/ECM and cell/cell interactions during the contraction of a fibroblast-populated collagen microsphere: theory and model simulation, Journal of biomechanics, Vol. 37, No. 11, pp. 1709-1718, 2004. [DOI:10.1016/j.jbiomech.2004.01.028]
23. [23] A. Faramarzian Haghighi, A. Haerian Ardakani, M. Kafaee Razavi, A. Moloodi, Simulation of mechanical behavior and construction of regular PLA scaffolds, Modares Mechanical Engineering, Vol. 19, No. 8, pp. 1953-1958, 2019.
24. [24] D. ASTM, 695-02a.(2002), Standard Test Methods for Compressive Properties of Rigid Plastics, 10Aug, 2002.
25. [25] Esposito Corcione, C., et al., Highly loaded hydroxyapatite microsphere/ PLA porous scaffolds obtained by fused deposition modelling. Ceramics International, 2019. 45(2, Part B): p. 2803-2810. [DOI:10.1016/j.ceramint.2018.07.297]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.