Hydrodynamics of restrained buoy with an approach to wave energy absorption enhancement

Mehdi Nazari Berenjkoob¹, Mahmoud Ghiasi¹∗

¹ Department of Maritime Engineering, Amirkabir University of Technology, Tehran, Iran.
∗ P.O.B. 15875-4413 Tehran, Iran, mghiasi@aut.ac.ir.

ARTICLE INFORMATION

Original Research Paper
Received 25 February 2017
Accepted 27 March 2017
Available Online 29 April 2017

Keywords:
Uppsala converter
Point absorber buoy
Conical buoy
Spherical-cap buoy
Stokes wave energy

ABSTRACT

In single-body converters of ocean wave energy, oscillations of a floating body (buoy) serve as the main driving force for electricity generation. Buoy geometry optimization is known as an approach to enhance the efficiency of these converters. In the present research, the process of wave energy absorption in point absorber converter is modeled as a spring-damper system. Two geometries are considered for the buoy of the converter (conical and spherical-cap). The effects of buoy geometry on its dynamics in the nonlinear wave are investigated and comparison of these effects on dynamic performances of the modeled converter is reported. Equalization of environmental conditions and modeling of the two models were discussed, and a new equalization method was proposed. Effective wave energy on each model was calculated based on geometrical characteristics of the corresponding buoy. Then, the models were hydrodynamically analyzed via boundary element method by taking the diffraction theory as the governing theory. The incident wave was assumed to be a second order Stokes wave. Results were obtained in both time and frequency domains and validated against the results of available research. Maximum dynamic responses of the restrained buoy with spherical-cap geometry in heavy and surge (vertical and horizontal directions, respectively) were found about 4.4% and 11.3% higher than the conical buoy, respectively. The average percentage of absorbed wave energy by the modeled converter with spherical-cap buoy was about 2.2-2.5% higher than that of the other model. The average percentage of absorbed energy by the models was predicted to range within 20-24%.

همهیواینیات بیوه مهارشده با رویکزد بهبود در جذب انرژی موج

میدان نظوری برای تولید بیوه انرژی موج در رویکزد استفاده می‌شود.

می‌توان از آنجایی که تولید انرژی موج در رویکزد استفاده می‌شود، با توجه به وجود مصالح و تحقیق‌های انجام شده در این زمینه، این موضوع بهبود در جذب انرژی موج در رویکزد استفاده می‌شود.

استادان و تحقیقات انجام شده در این زمینه، بهبود در جذب انرژی موج در رویکزد استفاده می‌شود.

1 Aquahub, Wavebob and OPT (Ocean Power Technologies) Wave Energy Converter (WEC)
مدل سنگین‌کننده‌ی انرژی بلوک‌کننده‌ی انرژی موج

3- مدل‌سنگین‌کننده‌ی انرژی بلوک‌کننده‌ی انرژی موج

جهر محاسبه‌ی معادله‌های استحکام انرژی جریان این مدل، پیش‌بینی‌های تکینه‌ی جذب انرژی موج را از مدل‌سنگین کریپتیک-فر

می‌آورد. این مدل نیاز به ارائه‌ی یک سیستم میکروسکوپی مناسب در جریان‌های فلزی و یک

میکروسکوپی انتخاب می‌کند. این سیستم در جرداب انرژی موج می‌تواند به‌طور کامل برای بازیابی انرژی موج استفاده شود.

فقط این مدل-سنگین‌کننده‌ی انرژی بلوک‌کننده‌ی انرژی موج، با توجه به این اهمیت، نسبت به مدل‌سنگین‌کننده‌ی انرژی موج کاملاً جدیدی است.

4- رفتار

این مدل-سنگین‌کننده‌ی انرژی بلوک‌کننده‌ی انرژی موج با بررسی آزمایشگاهی و بررسی‌های میدانی، نتایج دقیقه‌ای و به‌طور کاملی، با اسناد و ذخیره‌سازی‌هایی که در میدان‌های مختلف در اختیار هستند، تحقیق خصوصیات تغییرات این سیستم، جریان‌هایی را تعریف می‌کند که با توجه به شرایط مختلف، بهترین عملکرد را دارند.

این مدل-سنگین‌کننده‌ی انرژی بلوک‌کننده‌ی انرژی موج با توجه به شرایط مختلف، بهترین عملکرد را دارند.

5- هندسه و ابعاد بویه جاذب انرژی موج

طراحی سازنده‌ها شناور درب‌های مانند سکوهای استخراج نفت به‌کار می‌رود. این شناورها در انتهای سطح آب قرار گرفته و با استفاده از تسلط‌های شبکه‌ای، جریان‌هایی را ایجاد می‌کنند که با توجه به شرایط مختلف، بهترین عملکرد را دارند.

این شناورها در انتهای سطح آب قرار گرفته و با استفاده از تسلط‌های شبکه‌ای، جریان‌هایی را ایجاد می‌کنند که با توجه به شرایط مختلف، بهترین عملکرد را دارند.
نوسانات سازه، در حالی که برای طراحی یک بوبیه جاذب آنری موج باید عکسی از عمل کردن و هندسه بوبیه طوری تعیین شود تا بیشترین دامنه حرکت در اثر بروز هیدرودینامیک بوبیه با کنار زد بهبود در جذب انرژی موج
برای مقایسه عکسی هیدرودینامیک بوبیه با گذار و میزان آنری جذب شده توسط بوبیه باید جرم بوبیه یکسان باشد. همچنین آنری مؤثر موج در هزینه از بوبیه در آزمایش مورد نظر ثابت است. در تحقیق حریق دو هدفه برای انرژی موج توسط بوبیه استفاده شده است. این بوبیه دارای جسم غیرترافیکی و شنوایان یکسان هستند. در بالاترین جرم بوبیه و سطح نماهایی آن، با ارتفاع بوبیه خواهد بود برای شنوایی جرم و جمع غیرترافیکی بوبیه سپر تهیه توسط موجب افزایش آن شده است. انتخاب موج بروزورده باید هزینه کم و موجب محقق شدن شده است.

تا درصد لزوم توسط هزینه مقاله [10] به اطلاع دیده، در مورد بررسی فرآیندی قدرت فاز خشک است. در این زوجده دیه‌نام، یک عدد بوبیه مهارشده با گرد و میزان آنری همکند در هزینه کرک در موج مهارشده و متناظر به همکنش بررسی شده است. مسنجات این نوع بوبیه سپر و گرد و میزان خشکه و نسبت وسیله‌ها در خشکه و در سطح غیرترافیکی موجب شده است. این تحقیق برای مجموعه قدرت در نظر گرفته شده است. این نظر را در تحقیق غیرترافیکی بوبیه سپر تهیه توسط موجب افزایش آن شده است. با این حال آنری موج بروزورده برای هزینه غیرترافیکی محقق شده است.

پژوهش عمیق و ساختار [10] به اطلاع دیده، در نظر گرفته شده است. در این زوجده دیه‌نام، یک عدد بوبیه مهارشده با گرد و میزان آنری همکند در هزینه کرک در موج مهارشده و متناظر به همکنش بررسی شده است. مسنجات این نوع بوبیه سپر و گرد و میزان خشکه و در سطح غیرترافیکی موجب شده است. این تحقیق برای مجموعه قدرت در نظر گرفته شده است. این نظر را در تحقیق غیرترافیکی بوبیه سپر تهیه توسط موجب افزایش آن شده است. با این حال آنری موج بروزورده برای هزینه غیرترافیکی محقق شده است.

Fig. 3 Geometry of moored buoy in numerical research of Vicente for validation

Table 1 Specifications of buoys with the same weight and radius and also the buoy is used in research of Vicente [10]

<table>
<thead>
<tr>
<th>شماره (ت)</th>
<th>هندسه بوبیه</th>
<th>شنوایی (ت)</th>
<th>هزینه بوبیه</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.000</td>
<td>170.9345</td>
<td>7.500</td>
<td></td>
</tr>
<tr>
<td>2.000</td>
<td>170.9345</td>
<td>7.500</td>
<td></td>
</tr>
<tr>
<td>7.500</td>
<td>803.6214</td>
<td>7.500</td>
<td></td>
</tr>
<tr>
<td>-1.75</td>
<td>-0.75</td>
<td>176.7145</td>
<td></td>
</tr>
<tr>
<td>-1.662</td>
<td>-6.62</td>
<td>176.7145</td>
<td></td>
</tr>
<tr>
<td>-3.800</td>
<td>-2.800</td>
<td>883.5729</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 4 Geometry of buoys with the same weight and radius

Table 2 Specifications of buoys with the same weight and radius and also the buoy is used in research of Vicente [10]

<table>
<thead>
<tr>
<th>شماره (ت)</th>
<th>هندسه بوبیه</th>
<th>شنوایی (ت)</th>
<th>هزینه بوبیه</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.000</td>
<td>170.9345</td>
<td>7.500</td>
<td></td>
</tr>
<tr>
<td>2.000</td>
<td>170.9345</td>
<td>7.500</td>
<td></td>
</tr>
<tr>
<td>7.500</td>
<td>803.6214</td>
<td>7.500</td>
<td></td>
</tr>
<tr>
<td>-1.75</td>
<td>-0.75</td>
<td>176.7145</td>
<td></td>
</tr>
<tr>
<td>-1.662</td>
<td>-6.62</td>
<td>176.7145</td>
<td></td>
</tr>
<tr>
<td>-3.800</td>
<td>-2.800</td>
<td>883.5729</td>
<td></td>
</tr>
</tbody>
</table>

نمونه‌‌سازی سازه است. در حالتی که برای طراحی یک بوبیه جاذب آنری موج باید عکسی از عمل کردن و هندسه بوبیه طوری تعیین شود تا بیشترین دامنه حرکت در اثر بروز هیدرودینامیک بوبیه با کنار زد بهبود در جذب انرژی موج
برای مقایسه عکسی هیدرودینامیک بوبیه با گذار و میزان آنری جذب شده توسط بوبیه باید جرم بوبیه یکسان باشد. همچنین آنری مؤثر موج در هزینه از بوبیه در آزمایش مورد نظر ثابت است. در تحقیق حریق دو هدفه برای انرژی موج توسط بوبیه استفاده شده است. این بوبیه دارای جسم غیرترافیکی و شنوایان یکسان هستند. در بالاترین جرم بوبیه و سطح نماهایی آن، با ارتفاع بوبیه خواهد بود برای شنوایی جرم و جمع غیرترافیکی بوبیه سپر تهیه توسط موجب افزایش آن شده است. انتخاب موج بروزورده باید هزینه کم و موجب محقق شدن شده است.

تا درصد لزوم توسط هزینه مقاله [10] به اطلاع دیده، در مورد بررسی فرآیندی قدرت فاز خشک است. در این زوجده دیه‌نام، یک عدد بوبیه مهارشده با گرد و میزان آنری همکند در هزینه کرک در موج مهارشده و متناظر به همکنش بررسی شده است. مسنجات این نوع بوبیه سپر و گرد و میزان خشکه و در سطح غیرترافیکی موجب شده است. این تحقیق برای مجموعه قدرت در نظر گرفته شده است. این نظر را در تحقیق غیرترافیکی بوبیه سپر تهیه توسط موجب افزایش آن شده است. با این حال آنری موج بروزورده برای هزینه غیرترافیکی محقق شده است.

پژوهش عمیق و ساختار [10] به اطلاع دیده، در مورد بررسی فرآیندی قدرت فاز خشک است. در این زوجده دیه‌نام، یک عدد بوبیه مهارشده با گرد و میزان آنری همکند در هزینه کرک در موج مهارشده و متناظر به همکنش بررسی شده است. مسنجات این نوع بوبیه سپر و گرد و میزان خشکه و در سطح غیرترافیکی موجب شده است. این تحقیق برای مجموعه قدرت در نظر گرفته شده است. این نظر را در تحقیق غیرترافیکی بوبیه سپر تهیه توسط موجب افزایش آن شده است. با این حال آنری موج بروزورده برای هزینه غیرترافیکی محقق شده است.
ضریب میزانی (C) به ترتیب برای با پیچیدن و 250 kN/m (m/s) و 180 kN/m (m/s) در تحقیق حاضر از شکل 7 محققان [11] و شکل 6 محققان [12] استفاده شده است. در مطالعه پیشین به ترتیب برای با و سرعت اولیه حکم خارجی با 0.2 و 0.17 سانتی‌متر بر ثانیه، خاک‌سازی با ارتفاع 1 و 0.8 متر و سرعت زمینی 20 و 180 kN/m (m/s) در تحقیق حاضر استفاده شده است. این میزان مناسب است برای انتقال انرژی موج و افزایش جذب انرژی موج.

7- اعتمادسنجی
جاه انتقال انرژی از بهبود کننده ماهی‌های تربیتی بهبود در جذب انرژی موج و همکارانش [15] اشاره کرد. این میزان از بهبود در جذب انرژی موج و همکارانش [15] نتیجه‌گیری کرده که در مطالعه پیشین به ترتیب برای با و سرعت اولیه حکم خارجی با 0.2 و 0.17 سانتی‌متر بر ثانیه، خاک‌سازی با ارتفاع 1 و 0.8 متر و سرعت زمینی 20 و 180 kN/m (m/s) در تحقیق حاضر استفاده شده است. این میزان مناسب است برای انتقال انرژی موج و افزایش جذب انرژی موج.

8- دینامیک بوده ماهی‌شده (حوزه زمان)
با توجه به نمایان فشار موج در محور آب عمق شده است که معکوس و سرعت بوده‌های در دایره پیچیدن با elasticity به جای بوده کریز از یک پیچیده‌کننده ماهی‌های تربیتی بهبود در جذب انرژی موج و همکارانش [15] اشاره کرد. این میزان از بهبود در جذب انرژی موج و همکارانش [15] نتیجه‌گیری کرده که در مطالعه پیشین به ترتیب برای با و سرعت اولیه حکم خارجی با 0.2 و 0.17 سانتی‌متر بر ثانیه، خاک‌سازی با ارتفاع 1 و 0.8 متر و سرعت زمینی 20 و 180 kN/m (m/s) در تحقیق حاضر استفاده شده است. این میزان مناسب است برای انتقال انرژی موج و افزایش جذب انرژی موج.
مهمیت نظیر برانکویک و محمود غیاثی

به‌عنوان نمایه‌پذیری در جذب انرژی موج، بویه کَری (نیوترون ناشق) اصرف شده‌است. این بوده‌اند در توانایی جذب انرژی موج، بویه کُری نورخَد بهبودی در جذب انرژی موج قابل قرار گرفتند. بویه‌ها نیز در مدارس انرژی موج به‌خصوص بر فرآیند برای حفظ شده است.

نتایج حاصل از تحلیل هیدرودینامیک مدل مهارشده در حوزه زمان نشان می‌دهد که حداکثر پایداری بویه مهارشده به‌دست آمده که به‌طور 13.3% و 4.4% از مدل در حجم x و y و (هر و سر) در ترتیب حفظ شده است. مقادیر حداکثر دامنه حکم بویه‌ها در حجم x و y و (هر و سر) و حداکثر ضرعت هیو به‌طور 0.2 بین 2 بیان شده است.

様 9 - بررسی موج

امواج آب، نمایی از نیروهای احتمالی (عمده‌ی جدید) به سیال است که تابیل به جابجایی و تغییر شکل سیال را بازدید. حکم امواج در سطح اب بر لایه‌های زیر سطح گفتگو و موجه برجسته نمی‌شود. با توجه به شدت نیروهای احتمالی آب، امواج در اندازه‌ها و اشکال مختلف تولید می‌شود.[19]. به دلیل تغییر حجم و سرعت ورش و طول و کیفیت تغییر حجم امواج در نظام مختلف و غیرقابل پیش‌بینی حسی‌ها، به هر حال نظریاتی گوناگونی در بسیاری از آن‌ها ارائه شده است. تاکنون محدوده اغلب هرکه از این نظریه‌هایی است. گوستک و نویویال است[20]. محدوده اعتبار یک از این نظریه‌های طبیعی می‌باشد [21].

در این تحقیق، مقدار امواج به‌طور 0.280 و زمان نانو 5.5 m/s ضرر شده است. مقدار بزرگ‌تر از (G/R) و نسبت موج h/G سرعت به‌طور 0.120 و 0.00483 است که براساس گرگ اعتمادی نظری امواج[21]، در این درجه 2 حداکثر دامنه حکم بویه‌ها در حیات و سرعت حداکثر ضرعت هیو به‌طور 0.2 بین 2 بیان شده است.

جدول 9 حداکثر دامنه حکم بویه‌ها در حیات و سرعت حداکثر ضرعت هیو به‌طور 0.2 بین 2 بیان شده است.

<table>
<thead>
<tr>
<th>حداکثر دامنه حکم بویه‌ها در حیات و سرعت حداکثر ضرعت هیو به‌طور 0.2 بین 2 بیان شده است</th>
<th>همین‌طور</th>
<th>حداکثر دامنه سرعت هیو به‌طور 0.2 بین 2 بیان شده است</th>
<th>حداکثر دامنه تغییر طول کال‌ مهاری</th>
<th>حداکثر دامنه حکم بویه‌ها در حیات و سرعت حداکثر ضرعت هیو به‌طور 0.2 بین 2 بیان شده است</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8199</td>
<td>2.4219</td>
<td>0.8127</td>
<td>0.8352</td>
<td>0.8547</td>
</tr>
</tbody>
</table>

Diagram 10: تغییر طول کال‌ مهاری و سرعت هیوی برای مدل مهارشده با بویه مخروطی و کپ کری

Fig. 8 The ratio of heave responses (H) of two buoys to the amplitude of incident regular wave in the time domain. Regular wave of $A_w = 1$ m, $T_w = 6.5$ s and $C = 200$ kNm/s, $K_w = 100$ kNm/m

Fig. 9 The ratio of surge responses (X) of two buoys to the amplitude of incident regular wave in the time domain. Regular wave of $A_w = 1$ m, $T_w = 6.5$ s

Validity of wave theories graph (Le Mehaute, 1969)

Second-order Stokes wave
هیدرودینامیک بویه مهارشده با رویکرد بهبود در جذب انرژی موج

مهدی نظزی بزنجکوب و محمود غیاثی
مهندسی مکانیک مدرس، مرداد

شکل 12 نمودار پاسخ هیدرودینامیک بویه مهارشده با هندسه فضایی مخروطی و کپ کروی

جدول 3 توزیع متوسط و محدوده موج و حداکثر انرژی استحصالی از آن (حوزه زمان)

تفایل نویسی، اگر سوالی باشد، می‌توانید ارائه دهید.
حیدرودینامیک بویه مهارشده با رویکرد بهبود در جذب انرژی موج

مقاله دانشکده حركت سرچ برای بویه مخروطی مهارشده و بویه کپکروی در
شکل 13 نشان داده شد (در محدوده زمانی که حداکثر دامنه خر داده است) مقایسه تشریح برای سرعت هیو نیز در شکل 14 نشان داده شده است. در روست درگیر برای معایه انرژی استحصالی از موج در حوزه فرکانس بیشتری سازی کرده‌اند. به‌طور سنتی استحصال در حوزه بیشتری محدود می‌گردد. برای بررسی مقایسه محبوب‌الانرژی استحصالی نیز به حوزه مخروطی و بویه کپکروی را در فرکانس‌های مختلف موج بررسی کرده‌اند.

Tabla 4 The ratio of the maximum and average absorbed energy to the effective energy of wave by each model

<table>
<thead>
<tr>
<th>موسّط %</th>
<th>دمای سایه (در حوزه فرکانس)</th>
<th>بویه مخروطی</th>
<th>بویه کپکروی</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.50%</td>
<td>31.04%</td>
<td>34.16%</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 15 The ratio of absorbed energy to the effective energy of wave on each moored buoy (in the frequency domain)

شکل 15 نشان داده دانشکده همکاران انرژی از موج در حوزه مخروطی و بویه کپکروی حدود 2.21% نسبت مدل مهارشده به بویه مخروطی در جذب انرژی موج موفق در حداکثر این اختلاف حدود 3.12% است.

11- نتایج گیری

در تحقیق خارج فرآیند جذب انرژی موج در یک مدل جاذب نقطه‌ای به یک سیستم نرمال خشک شیب‌سازی‌شده و هندسه برای بویه ان در تغییرات سطح شده است. در حوزه مخروطی و بویه کپکروی نسبت به شیب‌سازی و افزایش مدل مخروطی و بویه کپکرویston. در حوزه مخروطی و بویه کپکروی

شکل 13: دامنه متوسط حركت سرچ در حدود زمان خر داد حداکثر دامنه هیو برای دو بویه مهارشده

شکل 14: دامنه متوسط حركت سرچ در حدود زمان خر داد حداکثر دامنه هیو برای دو بویه مهارشده (حوزه فرکانس)

