A novel control structure for wind turbine with synchronous generator for tower load reduction

Arash Hatami, Behnam Moetakef-Imani*

Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
* P.O.B. 9177948944, Mashhad, Iran, imani@um.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 11 June 2016
Accepted 24 September 2016
Available Online 26 October 2016

Keywords:
Multivariable adaptive control
Wind turbine simulator
Mechanical load reduction
Non-linear model

ABSTRACT

The attenuation of mechanical load is one of the most effective approaches in wind turbine components cost reduction, and improving the control system reduces mechanical loads with minimum effort. In modern wind turbines, electrically-excited synchronous generators are mostly applied in direct-drive structure. In current research, generator field voltage along with the blade pitch angle is employed for tower load reduction in a novel multivariable-adaptive control structure. The controller is designed based on the extracted model with aerodynamic, vibratory and electrical interactions. The centralized multivariable structure is chosen to simultaneously reduce rotor speed fluctuations and tower vibrations. Since the nonlinear wind turbine model is complex, the controller is designed via optimization process. The nonlinear aerodynamic behavior of blades influences the closed-loop performance in different operating condition; therefore controller is adapted to the condition by employing gain-scheduling method. The effects of signal noise, digital control and higher-order dynamics of electrical system might defect the closed-loop stability. The designed controller is implemented on a wind turbine simulator which includes the previously-mentioned effects. By comparing the performance of the multivariable adaptive controller with a two input-one output multivariable controller, it is proven that the mechanical signals acting on tower have been greatly decreased.

* P.O.B. 9177948944, Mashhad, Iran, imani@um.ac.ir
sampling error and output noise contribute to the overall measurement and control system performance. Hence, to achieve accurate and stable control, it is essential to design a robust and highly accurate control algorithm that can handle various disturbances and uncertainties. In this context, sensor fusion techniques, such as Kalman filters, play a crucial role in combining data from multiple sensors to improve the accuracy and reliability of the system outputs.

To design a robust control system, it is important to consider the interconnections between the different control modules and the potential impact of sensor errors. For instance, in a typical control system, the digital control module processes the sensor data and sends control signals to the actuator module. However, due to the presence of sensor errors, the control signals may not accurately reflect the true state of the system. Therefore, it is necessary to design the control system in a way that accounts for these effects and ensures that the system remains stable and performs as expected.

A possible solution to this problem is to design a control system that includes a Kalman filter to estimate the true state of the system based on the sensor data. The Kalman filter can be designed to incorporate the sensor dynamics and the control system dynamics, allowing it to accurately estimate the true state of the system even in the presence of sensor errors. This approach can significantly improve the performance of the control system and ensure that it remains stable and reliable.

In conclusion, the design of a control system that accounts for sensor errors requires careful consideration of the interconnections between the different control modules and the potential impact of sensor errors on the system performance. By designing a robust control system that incorporates sensor fusion techniques such as Kalman filters, it is possible to achieve accurate and stable control even in the presence of sensor errors.

References:
1-2 مدل آبیوردینامیکی روتور
خروجی سیستم آبیوردینامیکی، گشتاور و نیروی تراس روتور می‌باشد که بر اساس معادلات مونتوم (1) به صورت نویسی‌ای از نسبت سرعت باد به شدت سرعت و بکاربرد روشی از رابطه‌های (1) و (2) محاسبه می‌شوند. گشتاور و نیروی تراس روتور از نسبت سرعت

\[T_n = C_n(\beta, \lambda) \frac{1}{2} \rho R^3 (V_0 - x_{tip})^2 \]

\[F_t = C_t(\beta, \lambda) \frac{1}{2} \rho R^3 (V_0 - x_{tip})^2 \]

\[\lambda = \frac{R \omega_t}{V_0} \]

در شکل‌های 2 و 3 نمودارهای گشتاور و ضریب تراس روتور بر حسب نسبت سرعت نوک در زاویه مخاتمی برای آبیوردینامیکی و بکاربردهای ترسیم شده است. با معلوم بودن این ضریب، گشتاور آبیوردینامیکی و نیروی تراس روتور در شرایط کاری مختلف محاسبه می‌گردد.

2-2 مدل مجموعه مکانیکی
در این پژوهش، ریسپسیسیون مکانیکی توربین به سه مجمعه انتقال قدرت به و در شکل‌های شتاب و محرک، محرک اصلی، گیربکس و محور زاویای می‌باشد که شامل گشتاورهای آبیوردینامیکی و کرتوکمتوانی، انرژی‌های خارجی وارد بر مجموعه انتقال قدرت هستند، به ترتیب روش نیوتن، معادلات حرکت و دو مجموعه انتقال قدرت به صورت باریکه (1) استخراج می‌گردد. در نهایت سرعت دوران روتور و زنبار با معنی اینتری و سریای معادلات اجزا دورانی در روش (5) تابعی می‌شود.

\[J_{eq} \omega_t + B_{eq} \omega_t = T_n - N T_{em} \]

\[J_{eq} = J_s + N^2 J_g \]

\[B_{eq} = B_s + N^2 B_g \]

برنج عضو سازه‌های توربین است که تأمین انرژی آبیوردینامیکی وارد بر روتور را اهمیت بخش تاسیس و نویسی از روش مدل‌سازی و محاسبات. با استفاده از روش فرضیه فرکانسی می‌گردد. در محاسبه فرکانس‌های سطحی و شکل‌های انتقال مخاطرات خصوصی از روش پیشنهادی شده در مراجع (11) استفاده می‌شود. به‌طور کلی شکل‌ها و شکل‌های طبیعی و شکل‌های مخاطراتی برای نظر گرفتن جرم ناسال و روتور را یافته تهیه در جدول 1 و شکل 4 ارائه می‌گردد.

جدول 1 فرکانس‌های طبیعی برج (هرتز)

<table>
<thead>
<tr>
<th>مدل</th>
<th>مود سوم</th>
<th>مود دوم</th>
<th>مود چهارم</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>47.13</td>
<td>23.40</td>
<td>7.80</td>
</tr>
<tr>
<td>2</td>
<td>0.99</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شکل 4 چهار شکل مود خصوصی برج همراه جرم متمرکز روی آن
عزایت‌های خمیشی بر در سختی بلکه در این مقاله از آنکه به سایی‌ها برای استفاده در محیط‌های مختلف استفاده می‌گردد. در نهایت یک تجزیه‌گر به‌جای تجزیه‌گر کلیدی یک تجزیه‌گر کلیدی است. در نهایت یک تجزیه‌گر کلیدی یک تجزیه‌گر کلیدی است. در نهایت یک تجزیه‌گر کلیدی یک تجزیه‌گر کلیدی است.

شکل ۵. دیاگرام مدل غیرخطی توربین بادی با برجهای انعطاف‌پذیر

می‌توانید برای بررسی دقیق‌تر این مطلب از منابع دیگری استفاده کنید.
Fig. 6 Closed-loop nonlinear block diagram for wind turbine

\[K(s) = \begin{bmatrix} k_1 & k_2 \end{bmatrix} \]

(1)

- 4. 1.5

- 4. 1.5

\(k_1 \) and \(k_2 \) are the control gains as functions of pitch angle.

\[\beta^0 \]

(13)

\[\max(\beta_i) - \min(\beta_i) < 0.2, \quad i = 1, 2, \ldots, n \]

Fig. 7 Pitch control gains as functions of pitch angle

1 gain-scheduling
In a complex system, the performance is enhanced by the use of multivariable control structures. The figure below illustrates a concentrated multivariable control structure.

In the figure, the control inputs are denoted by u_1, u_2, \ldots, u_m and the control outputs are denoted by y_1, y_2, \ldots, y_n. The transfer functions from the control inputs to the control outputs are represented by G_{ij}, where i and j denote the input and output channels, respectively.

The equations for the control system are given by:

$$y = Gu + Fd$$

$$\dot{y} = [\Delta y_1, \ldots, \Delta y_n]^T, u = [y_1, \ldots, y_n]^T, d = \Delta y_u$$

where G is the system matrix, F is the feedforward matrix, u is the control input vector, y is the output vector, and d is the disturbance input vector.

The control structure is designed to achieve desired performance specifications, such as stability, robustness, and optimal performance. The design process involves selecting the appropriate control parameters and tuning the system to meet the desired performance criteria.

In conclusion, the use of multivariable control structures can significantly improve the performance of complex systems by providing a more flexible and robust control strategy. The figure and the equations provided serve as a practical example of how these control structures can be implemented in real-world applications.
رودری جو خروجی با توجه به وجود حلقه پیشکزی از اændادا بر برسی است. با توجه به اینکه حلقه کنترلی ولتاژ تحکیم در هر دو سخت‌کنترلی بر اساس سرعت دوره‌ای ورودی به سه، آنتانات ولتاژ تحکیم زناشو در هر دو سخت‌کنترلی ممکن است.

دامنه ارتعاشات برق مشابه تغییر شکل سازه برق و در نتیجه بارها.

مکانیکی واردار به اندازه در شکل 17 مفاهیت باردار به اندازه دستیابی مورد مطالعه نمایش داده می‌باشد. کاهش میانگین ارتعاشات برق با بهبودیری کنترل‌کنار ورودی خروجی به کاهش بارهای خستگی وارد برق و در نتیجه افزایش عمر این سازه منجر می‌شود.

به منظور بررسی می‌توان مقادیر مجموع کنترل‌کنار زاویه 6.7 درجه در [21] انحراف میانگین سرعت دورانی و ارتعاشات برق در جدول 3 فهرست می‌شود. نتایج این جدول نشان داده که 26 درصدی انحراف چشمهای میانگین در نتیجه با افزایش کنترل‌کنار ممکن است. می‌توان برای افزایش دستیابی به افزایش مجموع انحرافات زاویه خودکار می‌باشد. در این مورد بهبودی کاهش داده این محدودیت به افزایش عمر برق که ابزار مهمی با حدود 83% از قیمت کل توربین [28] می‌باشد منجر می‌شود.

شکل 13 سرعت دورانی رونده واندازه پردازش بو 8 کنتورل‌کنار چندکنترل

شکل 14 سرعت دوباره روتور و اندازه پردازش بو 8 کنتورل‌کنار چندکنترل

شکل 15 نیازه به پایه برق مرئی به دو کنترل‌کنار جنده‌های

در اکثر زمان‌های کنترل دو، تغییر حاجی پدیده‌ای با سرعت باد مغناطیسی ویا وابسته.

در این بخش، مدل‌کنار کنترل‌کنار جریان‌گیری با سه‌گانه ساختار شده در سرتود آرامش در شرایط با مطلق مورد مطالعه قرار می‌گیرد. همه میانگین به هدف مقابله کنترل‌کنار ورودی خروجی با حذف حلقه پیشکزی نشان دهد برای ارتعاشات نگه داشتن آی‌وی برای پایه‌ای کنترل‌کنار در شکل‌های این بخش برای پایه‌ی وابسته به بیشتر 100 نیاز از آرامش سازی‌ها می‌باشد. سرعت دورانی رونده و اندازه پردازش بو 8 کنترل‌کنار چندکنترلی در سرتود دورانی رونده و اندازه پردازش نیازه به ساختار کنترل‌کناری می‌باشد. بایان تجربه شکل‌های 13 و 14 نیازه داده می‌باشد. نشان دهد کنترل‌کنار جریان‌گیری بر اساس حتی دامنه ارتعاشات برق در سخت‌کنترلی ورودی خروجی به مراتب بهترین می‌باشد.

در این بخش و ارتعاشات نیازه به پایه‌ی وابسته به ورودی خروجی در شکل‌های 13 و 16 نیازه داده می‌باشد. نشان دهد کنترل‌کنار جریان‌گیری در ساختار دو مثال‌های جدول 2 توضیح می‌شود.

جدول 2 مشخصات آزمایش‌ها

<table>
<thead>
<tr>
<th>مشخصات پیچشی</th>
<th>توضیح</th>
</tr>
</thead>
<tbody>
<tr>
<td>سرعت دورانی</td>
<td>1</td>
</tr>
<tr>
<td>کانال سریوس</td>
<td>2</td>
</tr>
<tr>
<td>دوران روتر</td>
<td>3</td>
</tr>
<tr>
<td>نیازه به سخت‌کنار</td>
<td>4</td>
</tr>
<tr>
<td>نیازه به مثال</td>
<td>5</td>
</tr>
<tr>
<td>نیازه به ترمال</td>
<td>6</td>
</tr>
</tbody>
</table>

duty cycle

1 Multi-Input Single-Output (MISO)
کنترل توربین‌های بادی با توجه به رفتارهای ابرودینامیکی خطرناک و رهگشایی سیستم‌های کامپیوتری و الکترونیکی از اهمیت بی‌پایان برخوردار است. این امر برای کنترل‌کننده‌های میمون و میسون حاکم بر زناوار به‌طور هنگامی مثل‌رسال در دسترسی به سیستم حاکم بر مطلب در تمامی شرایط کارکرد موجود، روی جدول نشان داده شده است. کنترل‌کننده در نظر گرفته شد که به منظور ریسی آثار نوری، کنترل بیشتر و دینامیک‌های سیستم‌های الکتریکی، شبکه‌های توربین‌ها به دست آمده شده و بیشترین حمایت را از روی‌ها و زناوار موجود در حلقه مورد تحقیق فرا. می‌توان ساختار کنترلی نوین برای روی‌ها و زناوار بی‌پایان و بهره‌مند به‌کار بردن سیستم‌های حائز واقعی و دیگر سیستم‌های الکتریکی، شبکه‌های توربین‌ها به دست آمده شده و بیشتری حمایت را از روی‌ها و زناوار موجود در حلقه مورد تحقیق فرا. می‌توان ساختار کنترلی نوین برای روی‌ها و زناوار بی‌پایان و بهره‌مند به‌کار بردن سیستم‌های حائز واقعی و دیگر سیستم‌های الکتریکی، شبکه‌های توربین‌ها به دست آمده شده و بیشتری حمایت را از روی‌ها و زناوار موجود در حلقه مورد تحقیق فرا. می‌توان ساختار کنترلی نوین برای روی‌ها و زناوار بی‌پایان و بهره‌مند به‌کار بردن سیستم‌های حائز واقعی و دیگر سیستم‌های الکتریکی، شبکه‌های توربین‌ها به دست آمده شده و بیشتری حمایت را از روی‌ها و زناوار موجود در حلقه مورد تحقیق فرا. می‌توان ساختار کنترلی نوین برای روی‌ها و زناوار بی‌پایان و بهره‌مند به‌کار بردن سیستم‌های حائز واقعی و دیگر سیستم‌های الکتریکی، شبکه‌های توربین‌ها به دست آمده شده و بیشتری حمایت را از روی‌ها و زناوار موجود در حلقه مورد تحقیق F16: حمل‌ونقل تحریک زناوار مشابه با دویکنترل‌گر چندجمله‌ای

7- نتایج گزینه

![fig16](image1)

Table 3: مقایسه میکروکنترلر چندجمله‌ای

<table>
<thead>
<tr>
<th>نوع کنترل</th>
<th>احراز معیار</th>
<th>میزان کارکرد</th>
<th>میزان درصد پیوستگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>دو یکپذیر</td>
<td>1.50</td>
<td>89.2</td>
<td>26%</td>
</tr>
<tr>
<td>دو یکپذیر</td>
<td>2.50</td>
<td>95.6</td>
<td></td>
</tr>
<tr>
<td>دو یکپذیر</td>
<td>3.50</td>
<td>107.4</td>
<td></td>
</tr>
</tbody>
</table>

8- فهرست علائم

- R_n: ضریب کنترل‌گر
- R_e: ضریب کنترل‌گر
- R_k: ضریب کنترل‌گر
- ρ: ضریب کنترل‌گر
- α: ضریب کنترل‌گر
- β: ضریب کنترل‌گر
- λ: ضریب کنترل‌گر
- γ: ضریب کنترل‌گر
- δ: ضریب کنترل‌گر

![fig17](image2)
of cantilever beams under linearly varying axial load carrying an eccentric end rigid body, Transactions of the Canadian Society for Mechanical Engineering, Vol. 37, No. 1, pp. 89-110, 2013.

