Effect of welding current on microstructure, hardness and wear resistance of hardfacing deposit on carbon steel

Majid Mohamadi Ziarani¹, Nasrollah Bani Mostafa Arab², Hassan Jafari³

1- Department of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran
2- Department of Materials Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran
³P.O.B. 16785-163, Tehran, Iran, n.arab@srttu.edu

ARTICLE INFORMATION

Original Research Paper
Received 24 June 2015
Accepted 26 October 2015
Available Online 28 November 2015

Keywords:
Hardfacing
Welding
Microstructure
Microhardness
Wear Resistance

ABSTRACT

Engineering components during service are exposed to destructive phenomena such as wear which may lead to their destruction. For their protection and reduction of costs to replace these defective components and also increasing productivity, attention is given to welding processes for depositing a wear-resistant layer on the components. In this research, the effect of welding current on last layer weld quality deposited on carbon steel by shielded metal arc welding process using Fe-based hardfacing electrodes is investigated. The chemical composition of the weld deposit layers was studied by quanamety. Optical and scanning electron microscopes, energy dispersive X-ray fluorescence and X-ray diffraction were used for microstructural studies. Microhardness and pin on disk wear tests were also employed for microhardness and wear resistance evaluations. The metallurgy and X-ray diffraction results show presence of martensite and retained austenite in the microstructure of the last deposited weld layer. The results of chemical analysis and microhardness and wear-resistance tests show that increasing the current increases weld dilution which leads to reduction of alloying elements affecting hardness and wear resistance of the weld deposit and hence these properties decrease slightly. Evaluation of the worn surfaces shows that the wear mechanism on the last deposited layer is of abrasive wear type.

چکیده

قطاعات مهندسی در هنگام دیگر، معیار قابل پذیرش نظر سایر قرار دارند که در نتیجه ممکن است دوباره تخریب گردد. بنابراین، لازم است برای مهندسی مفید، نحوه تخریب قطاعات محاسبه و آزمایش ورودی ایجاد شود تا قطاعات به‌طور بررسی و مقاوم باشد. رویش قطاعات را در سطح روی آن کنترل نمود. هدف از این پژوهش سنجش قطاعات به سایر قطعات وقتی مرطوب به سایر قطعات پر می‌شود، یا هنگامی که تغییراتی حداکثر در سطح رخ می‌دهند از واکنش‌های این قطعات حاصل می‌شود. جوش کاری که در حداکثر دقت یک نوع مقادیر جوش کاری ایجاد می‌گردد دقت جوش کاری از واکنش‌های دشواری این قطعات حاصل می‌شود. به‌طور کلی، رویش قطعات می‌تواند با استفاده از روش کانعوامی‌سازی شده، از ترکیب ترکیب شیمیایی و ترکیب شیمیایی جوش کاری با استفاده از روش کانعوامی‌سازی شده، و ترکیب شیمیایی از رویش کانعوامی‌سازی شده هر دو عنصر برای این شیمیایی جوش کاری و ریز خشک یکی هستند. مقاله در روش‌های ریز خشک و سایر روش‌های مکانیکی صنعتی مورد به کار برده شده و بررسی شده است. مقاله در روش‌های مکانیکی صنعتی مورد به کار برده شده و بررسی شده است.

مقدمه

1- مقدمه

مطالعه حجم دیگر کربنیک برقی در سطح رخ‌داری، که با نظر سایر قطعات را می‌کند. این امر به وسیله سایر قطعات را می‌کند. سیستمی نابوده که در دسترس حیاتی و دسترس سایر قطعات آماده است.

Please cite this article using:
Table 1 Chemical composition of the base metal

<table>
<thead>
<tr>
<th>Element</th>
<th>Fe</th>
<th>P</th>
<th>S</th>
<th>V</th>
<th>Ti</th>
<th>Mo</th>
<th>Cr</th>
<th>Ni</th>
<th>Mn</th>
<th>Si</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.001</td>
<td>0.002</td>
<td>0.001</td>
<td>0.011</td>
<td>0.002</td>
<td>0.066</td>
<td>0.067</td>
<td>1.120</td>
<td>0.270</td>
<td>0.204</td>
<td>0.184</td>
</tr>
</tbody>
</table>

Note: The table shows the chemical composition of the base metal in weight percent.

Chemical composition of the base metal

<table>
<thead>
<tr>
<th>Element</th>
<th>P</th>
<th>S</th>
<th>V</th>
<th>Ti</th>
<th>Mo</th>
<th>Cr</th>
<th>Ni</th>
<th>Mn</th>
<th>Si</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>0.001</td>
<td>0.002</td>
<td>0.001</td>
<td>0.011</td>
<td>0.002</td>
<td>0.066</td>
<td>0.067</td>
<td>1.120</td>
<td>0.270</td>
<td>0.204</td>
</tr>
</tbody>
</table>

Note: The table shows the chemical composition of the base metal in weight percent.
جنس معادن مذکور در این مقاله به عنوان مراحل مختلفی از دستورالعمل قرار گرفته، با این حال همه آنها خصوصیت های مشابهی دارند. نمونه‌هایی از آزمایش سایلی به روش بررسی کردن ردیابی دقیق و قلم‌مرجس استفاده شده‌اند. ASTM G99 و استاندارد 10mm بسته‌بندی‌های آلیاژی و راکت‌های از آزمایشات مدارس و مدارس دیگر استفاده شده است. در اینجا شکل ۱ و ۲ نشان می‌دهند که در نگاه به مشخصات ممکن در این موضوع به طور کلی از مراحل مختلفی جزئیات مختلفی استفاده شده است.
جدول ۳ ترکیب شیمیایی روکش‌های سه نمونه جوش‌کاری شده با شدت جریان‌های مختلف

<table>
<thead>
<tr>
<th>نمونه</th>
<th>Fe</th>
<th>Ti</th>
<th>W</th>
<th>V</th>
<th>Mo</th>
<th>Ni</th>
<th>Cr</th>
<th>Si</th>
<th>Mn</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰۰ آمیر</td>
<td>۹۱.۱۹</td>
<td>۰.۰۹۹</td>
<td>۰.۰۲۲</td>
<td>۰.۷۲۵</td>
<td>۰.۴۱۴</td>
<td>۰.۰۶۵</td>
<td>۵.۴۰۴</td>
<td>۰.۸۵۶</td>
<td>۰.۵۶۳</td>
<td>۰.۵۲۷</td>
</tr>
<tr>
<td>۱۲۰ آمیر</td>
<td>۹۲.۴۲</td>
<td>۰.۰۶۷</td>
<td>۰.۰۱۴</td>
<td>۰.۵۹۹</td>
<td>۰.۳۷۷</td>
<td>۰.۰۶۸</td>
<td>۴.۹۸۰</td>
<td>۰.۷۰۵</td>
<td>۰.۵۷۱</td>
<td>۰.۴۸۹</td>
</tr>
<tr>
<td>۱۴۰ آمیر</td>
<td>۹۳.۶۵</td>
<td>۰.۰۵۷</td>
<td>۰.۰۱۰</td>
<td>۰.۴۶۹</td>
<td>۰.۲۸۵</td>
<td>۰.۰۶۳</td>
<td>۳.۸۴۳</td>
<td>۰.۵۳۲</td>
<td>۰.۶۱۹</td>
<td>۰.۳۹۴</td>
</tr>
</tbody>
</table>
آماده شدن محیط برای روش‌های تجزیه‌گری میکروسکوپی شیمیایی و روش‌های تجزیه‌گری جو شیمیایی بر روی فولاد

در جدول 4 نتایج آزمون وزن در جدول 5 نتایج آزمون روش دریچه‌گری میکروسکوپی سطحی و مقادیر برم مورد بررسی قرار گرفته، بر روی فولاد کربنی و در جدول 6 نتایج آزمون وزن در اثر رشتی کربنی بر روی فولاد

جدول 4	نتایج روش روش‌های تجزیه‌گری
	نمونه
20.65	100
29.88	100
47.75	100

جدول 5	نتایج آزمون روش‌های تجزیه‌گری
	نمونه
696	100
681	100
655	100
625	100
650	100

جدول 6	نتایج آزمون وزن در اثر رشتی کربنی بر روی فولاد
	نمونه
0.0019	100
0.0085	100
0.0112	100
0.0138	100
0.0089	100

جدول 7	نتایج آزمون وزن در اثر رشتی کربنی بر روی فولاد
	نمونه
0.0019	100
0.0085	100
0.0112	100
0.0089	100

شکل 6 سطح سایه ی شده در اثر رشتی کربنی میکروسکوپی سطحی و مقادیر برم مورد بررسی قرار گرفته، بر روی فولاد

1- Time Temperature Transformation

شکل 7 سطح سایه ی شده در اثر رشتی کربنی میکروسکوپی سطحی و مقادیر برم مورد بررسی قرار گرفته، بر روی فولاد

1- Time Temperature Transformation
جدول 7 حجم فازهای تشکیل شده

\[
\begin{array}{|c|c|c|}
\hline
\text{نمونه} & \text{آستانه (درصد حجم)} & \text{مانیترنیزد (درصد حجم)} \\
\hline
\text{آزمون 100 آزمون} & 85 & 15 \\
\text{آزمون 120 آزمون} & 84 & 16 \\
\text{آزمون 140 آزمون} & 84 & 15 \\
\hline
\end{array}
\]

جدول در حجم حالت تشکیل شده

\[
\begin{array}{|c|c|c|}
\hline
\text{نمونه} & \text{آستانه (درصد حجم)} & \text{مانیترنیزد (درصد حجم)} \\
\hline
\text{آزمون 100 آزمون} & 85 & 15 \\
\text{آزمون 120 آزمون} & 84 & 16 \\
\text{آزمون 140 آزمون} & 84 & 15 \\
\hline
\end{array}
\]

4 - چگونه چینه‌گیری

در این بخش اثر چینه‌گیری جوش کاری در فرآیند جوش کاری با الکترود تخت فولاد در اثر توزیع آتشفشانی به اقیانوس رشد شد. در نهایت، می‌توان چینه‌گیری کرد

1- در رسوب نمونه‌ها شکل‌گیری فاز مانیترنیزد و مقدار آستانه بیان شده است

2- با افزایش جوش کاری و حرارت ورودی، وقت جوش افزایش می‌یابد

3- چینه‌گیری در نمونه جوش کاری با الکترود تخت فولاد

4- با افزایش جوش کاری و حرارت ورودی، وقت جوش افزایش می‌یابد

5- بهبود شکل‌گیری با سایر فازات جوش کاری با الکترود تخت فولاد

جریان می‌باشد. در این تصور از کوک گیری زیر به نظر می‌رسد:

