Studying the effect of sound absorber materials in acoustical behavior of double-wall cylindrical shell

Anoushiravan Farshidianfar, Pouria Oliazadeh

Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

* P.O.B. 9177948974 Mashhad, Iran, farshid@um.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 24 December 2014
Accepted 14 January 2015
Available Online 07 March 2015

Keywords:
- Double-Wall Shell
- Transmission Loss
- Ring Frequency
- Coincidence Frequency

ABSTRACT

Sound transmission through a double – wall circular cylindrical shell is investigated. In order to study the acoustic behavior of these kinds of thin circular cylindrical shells, an exact analytical approach is discussed in detail. Using an infinitely long thin walled circular cylindrical shell subjected to a plane wave incidence, the structure – acoustic equations based on the Donnell’s thin shell theory are obtained and transmission losses calculated by this approach are compared to the transmission losses obtained according to the Love’s theory. The comparison shows that the Donnell theory distinguishes all the frequencies in which sound is transmitted inside the shell easily and it predicts the sound transmission characteristics of a thin circular cylindrical shell better than the Love’s theory, especially in resonance – controlled and mass – controlled regions. Then the effects of different sound absorber materials and various gases are studied in order to fill the cylindrical shell’s gap with a material except air. The results show that high sound transmission loss and better trend can be achieved by using these sound absorber materials in double-wall circular cylindrical shells.

Please cite this article using:

1) این متن صحبت‌هایی از مورد بررسی، و بررسی‌های از جمله اثرات کمک‌رسان و تاثیرات مثبت و منفی بر نتایج نهایی است.

2) در این مقام، یک روش تحلیلی برای بدست آوردن افزایش قدرت صدا در پوسته‌های استوانه‌ای و در جریان برای تغییر داخلی داشته باشد.

3) به ترتیب ثابت نمایان می‌گردد پوسته استوانه‌ای جزئی تراکم

4) شکل 1 پوسته استوانه‌ای جزئی تراکم

5) شکل 2 پوسته استوانه‌ای ایده‌آل

6) معادلات حاکم

7) پوسته استوانه‌ای در غیر تغییرات سطحی، مکانیکی و شعاعی به ترتیب با

8) در مقایسه پوسته‌های استوانه‌ای دیگر، نتایج نهایی از تغییرات سطحی، مکانیکی و شعاعی به ترتیب با

9) پوسته داخلی و خارجی در معادلات (1) نمایش داده شده است.

10) مهندس مکانیک مدرسه، پیام 1394، دوره 15، شماره 4
\[p^I_2(r, x, \theta, t) = p^I_2 \times \sum_{n=0}^{\infty} \exp[(i (\omega t - k_1 x) + (j - j_1) r) \cos(\alpha \theta)] \]

\[\theta_n = \left\{ \begin{array}{ll}
1, & n = 0 \\
2, & n = 1, 2, \ldots
\end{array} \right. \]

\[p_t^I(r, x, \theta, t) = p_t^I + \sum_{n=0}^{\infty} \exp[(i (\omega t - k_1 x) + (j - j_1) r) \cos(\alpha \theta)] \]

\[p_{xx}^I(r, x, \theta, t) = p_{xx}^I + \sum_{n=0}^{\infty} \exp[(i (\omega t - k_1 x) + (j - j_1) r) \cos(\alpha \theta)] \]

\[p_{yy}^I(r, x, \theta, t) = p_{yy}^I + \sum_{n=0}^{\infty} \exp[(i (\omega t - k_1 x) + (j - j_1) r) \cos(\alpha \theta)] \]

\[p_{zz}^I(r, x, \theta, t) = p_{zz}^I + \sum_{n=0}^{\infty} \exp[(i (\omega t - k_1 x) + (j - j_1) r) \cos(\alpha \theta)] \]

\[\theta_n = \left\{ \begin{array}{ll}
1, & n = 0 \\
2, & n = 1, 2, \ldots
\end{array} \right. \]

\[p_{xx}^I(r, x, \theta, t) = p_{xx}^I + \sum_{n=0}^{\infty} \exp[(i (\omega t - k_1 x) + (j - j_1) r) \cos(\alpha \theta)] \]

\[p_{yy}^I(r, x, \theta, t) = p_{yy}^I + \sum_{n=0}^{\infty} \exp[(i (\omega t - k_1 x) + (j - j_1) r) \cos(\alpha \theta)] \]

\[p_{zz}^I(r, x, \theta, t) = p_{zz}^I + \sum_{n=0}^{\infty} \exp[(i (\omega t - k_1 x) + (j - j_1) r) \cos(\alpha \theta)] \]
\[E_2 = \rho_2 h_2 \omega^2 - \frac{k_{21}(1 - \nu_{12})}{2} k_{12}^2 \frac{k_{12}}{R^2} n^2, \]
\[F_2 = \frac{k_{21}}{R^2} n G_2 = \frac{k_{21}^2}{R^2} k_{12} (j_1) H_2 = \frac{k_{21}^2}{R^2} n. \]
\[I_2 = \frac{\rho_2 h_2 \omega^2 - D_{21} k_{12}^2}{2} \]
\[J_2 = H_2^* (k_2, R_2), J_3 = -H_2^* (k_3, R_3). \]
\[B_1 = -\rho_1 \omega^2 C_1 = k_1 H_1^* (k_1, R_1), \]
\[D_3 = k_2 H_2^* (k_2, R_2), \]
\[E_3 = -\rho_2 \omega^2, F_3 = k_3 H_1^* (k_3, R_3), \]
\[G_3 = k_3 H_2^* (k_3, R_3), H_3 = -\rho_2 \omega^2, \]
\[I_3 = k_3 H_2^* (k_3, R_3), J_3 = -\rho_2 \omega^2, \]
\[K_3 = \rho_0 c_0 (\xi - j)^3 J_3, \]
\[L_3 = -\rho_0 c_0 (\xi - j)^3 k_3 J_3 (k_3, R_3) \]
\[\text{در معادله (24).} \]
\[\frac{k}{\text{پیشنهاد می‌شود که}} \]

با حل سیاست‌های این‌انالیز (23)، ماهی‌های انعطاف‌پذیر و انتقالی و \(p_0 \)

بررسی‌های دانشجویی بروخوردی \(P \)

محاسبه میزان افزایش حرارت در انتقال به دلیل پیدایش انرژی این‌انالیز (TL) (24) روابط استخوانی و

با حل سیاست‌های این‌انالیز (23) به‌دست آمده است. در این مطالعه مکان‌های پیشنهادی سیستم‌های انعطاف‌پذیر، انرژی و بروخوردی

این با محاسبه نسبت توان موج بروخوردی به موج انتقالی در واحد طول

پیشنهاد می‌شود که با بررسی سیاست‌های این‌انالیز در دو جهت، یک رابطه می‌توان

TL = 10 \log_{10} \left(\sum_{n=1}^{N} \text{Re} \left(\frac{p_{01}^I \times H_1^0 (k_1, R_1) \times \left(j_1 \omega W_1 \right)^{1/2} \alpha \pi \times R_1}{k_0 \cos \theta} \right) \times R_2 \right) \]

\[\times \left\{ \begin{array}{c} 0 \\ \cdots \\ 0 \end{array} \right\} \]

\[\text{در معادله (24).} \]

\[\frac{k}{\text{پیشنهاد می‌شود که}} \]

با حل سیاست‌های این‌انالیز (23)، ماهی‌های انعطاف‌پذیر و انتقالی و \(p_0 \)

بررسی‌های دانشجویی بروخوردی \(P \)

محاسبه میزان افزایش حرارت در انتقال به دلیل پیدایش انرژی این‌انالیز (TL) (24) روابط استخوانی و

با حل سیاست‌های این‌انالیز (23) به‌دست آمده است. در این مطالعه مکان‌های پیشنهادی سیستم‌های انعطاف‌پذیر، انرژی و بروخوردی

این با محاسبه نسبت توان موج بروخوردی به موج انتقالی در واحد طول

پیشنهاد می‌شود که با بررسی سیاست‌های این‌انالیز در دو جهت، یک رابطه می‌توان

TL = 10 \log_{10} \left(\sum_{n=1}^{N} \text{Re} \left(\frac{p_{01}^I \times H_1^0 (k_1, R_1) \times \left(j_1 \omega W_1 \right)^{1/2} \alpha \pi \times R_1}{k_0 \cos \theta} \right) \times R_2 \right) \]

\[\times \left\{ \begin{array}{c} 0 \\ \cdots \\ 0 \end{array} \right\} \]

\[\text{در معادله (24).} \]

\[\frac{k}{\text{پیشنهاد می‌شود که}} \]

با حل سیاست‌های این‌انالیز (23)، ماهی‌های انعطاف‌پذیر و انتقالی و \(p_0 \)

بررسی‌های دانشجویی بروخوردی \(P \)

محاسبه میزان افزایش حرارت در انتقال به دلیل پیدایش انرژی این‌انالیز (TL) (24) روابط استخوانی و

با حل سیاست‌های این‌انالیز (23) به‌دست آمده است. در این مطالعه مکان‌های پیشنهادی سیستم‌های انعطاف‌پذیر، انرژی و بروخوردی

این با محاسبه نسبت توان موج بروخوردی به موج انتقالی در واحد طول

پیشنهاد می‌شود که با بررسی سیاست‌های این‌انالیز در دو جهت، یک رابطه می‌توان

TL = 10 \log_{10} \left(\sum_{n=1}^{N} \text{Re} \left(\frac{p_{01}^I \times H_1^0 (k_1, R_1) \times \left(j_1 \omega W_1 \right)^{1/2} \alpha \pi \times R_1}{k_0 \cos \theta} \right) \times R_2 \right) \]

\[\times \left\{ \begin{array}{c} 0 \\ \cdots \\ 0 \end{array} \right\} \]

\[\text{در معادله (24).} \]

\[\frac{k}{\text{پیشنهاد می‌شود که}} \]

با حل سیاست‌های این‌انالیز (23)، ماهی‌های انعطاف‌پذیر و انتقالی و \(p_0 \)

بررسی‌های دانشجویی بروخوردی \(P \)

محاسبه میزان افزایش حرارت در انتقال به دلیل پیدایش انرژی این‌انالیز (TL) (24) روابط استخوانی و

با حل سیاست‌های این‌انالیز (23) به‌دست آمده است. در این مطالعه مکان‌های پیشنهادی سیستم‌های انعطاف‌پذیر، انرژی و بروخوردی

این با محاسبه نسبت توان موج بروخوردی به موج انتقالی در واحد طول

پیشنهاد می‌شود که با بررسی سیاست‌های این‌انالیز در دو جهت، یک رابطه می‌توان

TL = 10 \log_{10} \left(\sum_{n=1}^{N} \text{Re} \left(\frac{p_{01}^I \times H_1^0 (k_1, R_1) \times \left(j_1 \omega W_1 \right)^{1/2} \alpha \pi \times R_1}{k_0 \cos \theta} \right) \times R_2 \right) \]

\[\times \left\{ \begin{array}{c} 0 \\ \cdots \\ 0 \end{array} \right\} \]

\[\text{در معادله (24).} \]
این مانند جنس یک پوسته است. ناحیه یکپارچه و درون ناحیه یکپارچه در ناحیه حس کننده ناحیه عصبی و ناحیه عصبی ناحیه ع chemin b. منبع: مهندس مدرس، قیام 1394، دوره 15، شماره 4
پیک نمودار نشان داده شده است. با دقت در شکل 8 مشاهده می‌گردد که بی‌یون اورتان (فوم) نسبت به بی‌یون اورتان حرارت جدید صوت بیشتری دارد. البته کمک می‌کند.

چگالی بی‌یون اورتان (فوم) نسبت به هر دو نوع بی‌یون دارای این امر می‌باشد. زیبای آرامش جرم در یک حجم یکسانی به میزان نسبت حجم بهتکمیل توسط جریان موج صوتی کمک می‌کند.

این گزارش مختلف

همانطور که در مقدمه اشاره شد، مرسوم است که هنگام بررسی رفتار اکسیژن‌پوسته استونهای دو جداره از هر یک بر گردند. فضا بین پوشش داخلی و خارجی استفاده می‌گردد. حال آنکه علاوه بر هوا می‌توان از "گازهای متدول دیگر" استفاده کرد. برای بررسی اثر گازهای مختلف در کاهش انرژی صوت به داخل پوسته استونهای، پنج گزار دیگر در نظر گرفته شدهاند:

- آرگون، نیون، اکسیژن، هلیوم و هیدروژن.

چگالی و سرعت صوت این گازها در جدول 1 آورده شده است. شکل 9 نمودار میزان اتکال بر حساب فراکس از جستجو بین بهبود و نیز انتقال این ارتفاع مشاهده می‌گردد. همچنین سرعت صوت ۱/۷ متر در ۱/۲ متر فرکس از جستجو بین ۱۵ تا ۲۲ می‌باشد.

جدول 1. چگالی و سرعت گازهای بین فراکس و نوش گاز

<table>
<thead>
<tr>
<th>نوع گاز</th>
<th>سرعت (m/s)</th>
<th>چگالی (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>آرگون</td>
<td>۴۱۵</td>
<td>۱/۶۶۱</td>
</tr>
<tr>
<td>نیون</td>
<td>۴۳۵</td>
<td>۰/۸۹۹</td>
</tr>
<tr>
<td>اکسیژن</td>
<td>۳۱۶</td>
<td>۱/۳۳۱</td>
</tr>
<tr>
<td>هلیوم</td>
<td>۹۶۵</td>
<td>۰/۱۶۶</td>
</tr>
<tr>
<td>هیدروژن</td>
<td>۱۲۸۴</td>
<td>۰/۸۹۸</td>
</tr>
</tbody>
</table>

شکل 4 نمودار میزان اتکال بر حساب فراکس برای پلی ایپین (چگالی زیاد)

شکل 5 نمودار میزان اتکال بر حساب فراکس برای پلی ایپین (چگالی کم)

شکل 6 نمودار میزان اتکال صدا بر حساب فراکس برای پلی اورتان (فوم)

شکل 7 نمودار میزان اتکال بر حساب فراکس برای پوسته نکه دودچرخه (حفاظت فرمول رنگ) و پوسته دودچرخه بدون جاذب صوت (حفاظت فرمول رنگ)

تشکر می‌گردد از بین بردیدن پایان این سه جاده صوت را پیش با هم مقایسه کرده و نمودار میزان اتکال صدا بر حساب فراکس برای این سه جاده در
نمودار افت صدا بر حسب فرکانس برای گاز هیدروژن

نمودار افت صدا بر حسب فرکانس برای گاز آرگون

نمودار افت صدا بر حسب فرکانس برای گاز اکسیژن

نمودار افت صدا بر حسب فرکانس برای گاز نیتروژن

نمودار افت صدا بر حسب فرکانس برای گاز هیلیوم

نتایج گزارش

در این مقاله یک مدل تحلیلی برای بررسی فرکانس آکوستیک پیوسته‌های استوانه‌ای دو جداره که در معرض یک موج صوئی قرار دارند، ارائه شد. شرایط این مدل بر اساس مقدار دقیق افت صدا در پیوسته‌های استوانه‌ای دو جداره پیوسته‌ای دو جداره شامل می‌باشد که با حل همبستگی این ارقام برای بدست آمدن پیوسته‌های دو جداره استفاده می‌شود. نتایج بررسی این مدل نشان داد که در پیوسته‌های استوانه‌ای دو جداره می‌توان از مرجع ترازو بستگی به تغییرات شرایط بدست آورده با توجه به نتایج گزارش این مدل، در پیوسته‌های استوانه‌ای دو جداره می‌توان بررسی این مدل را به‌عنوان یک مدل مفید برای پیوسته‌های استوانه‌ای دو جداره تلقی کرد.