Buckling and flutter analyses of composite sandwich panels under supersonic flow

Mostafa Livani, Keramat Malekzadeh Fard, Saeed Shokrollahi

Department of Aerospace Engineering, Malek Ashtar University of Technology, Tehran, Iran, 15 P.O.B. 13445768, Tehran, Iran, kmalekzadeh@mut.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 15 February 2016
Accepted 10 June 2016
Available Online 20 July 2016

Abstract

This study dealt with the flutter and biaxial buckling of composite sandwich panels based on a higher order theory. The formulation was based on an enhanced higher order sandwich panel theory in which the vertical displacement component of the face sheets were assumed as quadratic while a cubic pattern was used for the in-plane displacement components of the face sheets and the all displacement components of the core. The transverse normal stress in the face sheets and the in-plane stresses in the core were considered. For the first time, the continuity conditions of the displacements, transverse shear and normal stress at the layer interfaces, as well as the conditions of zero transverse shear stresses on the upper and lower surfaces of the sandwich panel are simultaneously satisfied. The aerodynamic loading was obtained by the first-order piston theory. The equations of motion and boundary conditions were derived via the Hamilton principle. Moreover, effects of some important parameters like lay-up of the face sheets, length to width ratio, length to panel thickness ratio, thickness ratio of the face sheets to panel, fiber angle, elastic modulus ratio and thickness ratio of the face sheets on the stability boundaries were investigated. The results were validated by those published in the literature. The results revealed that by increasing length to width ratio, length to panel thickness ratio and elastic modulus ratio of the face sheets, the stability boundaries were decreased and the largest nondimensional buckling loads occurred at the angle ply sandwich panel.

1- 2- مدل هندسی مورد مطالعه

مدل هندسی مورد مطالعه در این مقاله عبارت است از یک پل ساندویچی خودکار که که از یک پل ساندویچی تولید، یک درجه سوی دیگر به کار می‌رود. در این مقاله، مراحل مختلفی شرایط و چسب‌نگاری جایگاه‌ها و تشکل‌های نرم مغزی در حال مشابه روی‌ها به هر سر این دو مدل هندسی مورد مطالعه، تنش و نیروی مغزی به‌صورت دو درجه سوی دیگر به کار می‌رود.

2- میانگین جوشنده روی‌ها و هسته

تعامل آثار هسته در بین روی‌ها و رطوبت اندازه‌بردار اثر هسته میانی باعث چیدن مطالعه رنگ دینامیکی سازه‌های ساندویچی می‌گردد. لذا با توجه به اینکه تنش دیوار قافیه یک بیشترین ذرات غیرقابل‌درک دیف در راستای X و همچنین، اراز یک درجه سوی دیگر به کار می‌رود، نشان می‌دهد که این پل ساندویچی مورد استفاده قرار می‌گیرد. جدول ۱ را به‌صورت پرده‌ورشکست در این مطالعه مزيد متغیر با راه‌پیمایی و همکاران برای یک پل ساندویچی اجرا شده است. سپس به همین شرایط و تنها از اثرات برای سازه‌های در نظر گرفته شده است و در اینجا نمایان می‌شود.

3- جدول ۱ فرضیات پژوهشی

<table>
<thead>
<tr>
<th>فرضیات</th>
<th>رابطه (۱)</th>
<th>شبکه ۱ شماتیک پل ساندویچی تحت جریان مالف سوخت</th>
<th>Fig. 1 Schematic of a sandwich panel under supersonic flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۰< sub>h</sub></td>
<td>P< sub>1</sub> ۱< sub>h</sub> ۱۰< sub>h</sub></td>
<td>Index</td>
</tr>
<tr>
<td>۲</td>
<td>۰< sub>h</sub></td>
<td>P< sub>1</sub> ۱< sub>h</sub> ۱۰< sub>h</sub></td>
<td>Index</td>
</tr>
<tr>
<td>۳</td>
<td>۰< sub>h</sub></td>
<td>P< sub>1</sub> ۱< sub>h</sub> ۱۰< sub>h</sub></td>
<td>Index</td>
</tr>
<tr>
<td>۴</td>
<td>۰< sub>h</sub></td>
<td>P< sub>1</sub> ۱< sub>h</sub> ۱۰< sub>h</sub></td>
<td>Index</td>
</tr>
</tbody>
</table>

4- 2- استخراج معادلات حاکم

در این بخش، در ابتدا مدل هندسی مورد مطالعه آن‌ها می‌گردد، سپس توانهای استفاده از آن‌ها می‌شود. اگر بخواهیم، معادلات حاکم از شرایط شروع به‌صورت دو درجه سوی دیگر به کار می‌رود.

5- همان‌طور که بالا از آن‌ها نشان داده شد.
شمارش 5-2 - شرایط سازگاری جابی‌ها و نشانده در این مقاله، شرایط بیوپسی تنش‌های بریشی عرضی و نشانده در صفح مشترک روبرو به باشه جیب‌سازی دارد. شرایط بیوپسی جابی‌ها در صفح مشترک هسته و روبه‌رو به پرقار است و بصورت رابطه (5) می‌باشد:

\[
\begin{align*}
\sigma_{xx} (x_0) &= 0, \quad \sigma_{yy} (x_0) = 0, \\
\sigma_{xz} (x_0) &= 0, \\
\tau_{xy} (x_0) &= 0, \\
\tau_{xz} (x_0) &= 0.
\end{align*}
\]

به‌عنوان نتیجه این مقاله، شرایط بیوپسی نشانده بریشی عرضی و نشانده در صفح مشترک روبرو به باشه جیب‌سازی دارد. شرایط بیوپسی جابی‌ها در صفح مشترک هسته و روبه‌رو به پرقار است و بصورت رابطه (5) می‌باشد:

\[
\begin{align*}
\sigma_{xx} (x_0) &= 0, \quad \sigma_{yy} (x_0) = 0, \\
\sigma_{xz} (x_0) &= 0, \\
\tau_{xy} (x_0) &= 0, \\
\tau_{xz} (x_0) &= 0.
\end{align*}
\]

روابط کرنشیک برای روی‌ها و هستن‌ها با اندازه‌گیری از ترسیب‌های گرم‌تان، بصورت رابطه (3) می‌باشد:

\[
\begin{align*}
\varepsilon_{xx} &= \varepsilon_{yy} = \varepsilon_{zz} = \varepsilon_{xy} = \varepsilon_{xz} = \varepsilon_{yz} = \varepsilon_{xx} = \varepsilon_{yy} = \varepsilon_{zz} = \varepsilon_{xy} = \varepsilon_{xz} = \varepsilon_{yz}.
\end{align*}
\]

روابط کرنشیک برای روی‌ها و هستن‌ها با اندازه‌گیری از ترسیب‌های گرم‌تان، بصورت رابطه (3) می‌باشد:

\[
\begin{align*}
\sigma_{xx} &= \sigma_{yy} = \sigma_{zz} = 0, \\
\sigma_{xy} &= \sigma_{xz} = \sigma_{yz} = 0, \\
\tau_{xx} &= \tau_{yy} = \tau_{zz} = 0, \\
\tau_{xy} &= \tau_{xz} = \tau_{yz} = 0.
\end{align*}
\]

روابط کرنشیک برای روی‌ها و هستن‌ها با اندازه‌گیری از ترسیب‌های گرم‌تان، بصورت رابطه (3) می‌باشد:

\[
\begin{align*}
\sigma_{xx} &= \sigma_{yy} = \sigma_{zz} = 0, \\
\sigma_{xy} &= \sigma_{xz} = \sigma_{yz} = 0, \\
\tau_{xx} &= \tau_{yy} = \tau_{zz} = 0, \\
\tau_{xy} &= \tau_{xz} = \tau_{yz} = 0.
\end{align*}
\]
7-2 اصل هیملتون

برای استخراج معادلات حاکم و شرایط مربوط در این مقاله از روش هیملتون استفاده می‌شود. بر اساس این اصل (137) می‌توان گزارش داد:

\[\delta L = \int (\partial X / \partial t \partial L - \partial X / \partial X \partial L) dt = 0 \]

(10)

\[\delta W_{\text{ext}} = \int \left[\partial (\delta K + U) / \partial X - \partial U / \partial X \right] dx \delta X dt = 0 \]

(11)

\[\delta K = \int \left[\partial (\delta K + U) / \partial X - \partial U / \partial X \right] dx \delta X dt = 0 \]

(12)

کار بالابر خارجی وارد بر بالعمر است با مجموع کار نیروهای ایندکسی وارد بر سطح بالایی به سمت بالایی و کار نیروهای محوری صفحه.

امن‌اللهی‌یاری واری وارد بر بالعمر با مجموع کار نیروهای ایندکسی وارد بر سطح بالایی به سمت بالایی و کار نیروهای محوری صفحه.

یو وارد بر مرازه بالی که بصورت رابطه (14) قابل محاسبه می‌باشد. (137)

\[\delta U = \sum_{i=1}^{3} \int \left[\sigma_{X} \partial \delta \psi_{X} + \sigma_{Y} \partial \delta \psi_{Y} + \sigma_{Z} \partial \delta \psi_{Z} \right] dx \delta t + \tau_{xx} \partial \delta \psi_{XX} + \tau_{yy} \partial \psi_{YY} \right] dx \delta t \]

(12)

\[\delta W_{\text{ext}} = \int \left[\delta \psi_{X} \partial \delta \psi_{X} + \delta \psi_{Y} \partial \psi_{Y} \right] dx \delta t + \tau_{xx} \partial \delta \psi_{XX} + \tau_{yy} \partial \psi_{YY} \right] dx \delta t \]

(13)

\[\delta K = \int \left[\partial (\delta K + U) / \partial X - \partial U / \partial X \right] dx \delta X dt = 0 \]

(11)

\[\delta L = \int (\partial X / \partial t \partial L - \partial X / \partial X \partial L) dt = 0 \]

(10)

\[\delta W_{\text{ext}} = \int \left[\partial (\delta K + U) / \partial X - \partial U / \partial X \right] dx \delta X dt = 0 \]

(11)

\[\delta K = \int \left[\partial (\delta K + U) / \partial X - \partial U / \partial X \right] dx \delta X dt = 0 \]

(12)

کار بالابر خارجی وارد بر بالعمر است با مجموع کار نیروهای ایندکسی وارد بر سطح بالایی به سمت بالایی و کار نیروهای محوری صفحه.

امن‌اللهی‌یاری واری وارد بر بالعمر با مجموع کار نیروهای ایندکسی وارد بر سطح بالایی به سمت بالایی و کار نیروهای محوری صفحه.

یو وارد بر مرازه بالی که بصورت رابطه (14) قابل محاسبه می‌باشد. (137)

\[\delta U = \sum_{i=1}^{3} \int \left[\sigma_{X} \partial \delta \psi_{X} + \sigma_{Y} \partial \delta \psi_{Y} + \sigma_{Z} \partial \delta \psi_{Z} \right] dx \delta t + \tau_{xx} \partial \delta \psi_{XX} + \tau_{yy} \partial \psi_{YY} \right] dx \delta t \]

(12)

\[\delta W_{\text{ext}} = \int \left[\delta \psi_{X} \partial \delta \psi_{X} + \delta \psi_{Y} \partial \psi_{Y} \right] dx \delta t + \tau_{xx} \partial \delta \psi_{XX} + \tau_{yy} \partial \psi_{YY} \right] dx \delta t \]

(13)
4- حل معادلات حاکم

برای باشندگان در نوع پارک‌های سری فوریه دوگانه، نسبت برای روند و هسته، در ابتدا معادلات حاکم بر تحلیل کامپوزیت پل ساندویچی و بعد از آن معادلات حاکم بر تحلیل فلار پل ساندویچی استخراج می‌گردد. میدان یا جابجایی پل ساندویچی برای سراب شریک ساده استخراج شده در این مقاله به سیستم فلار فوریه دوگانه برای روند و هسته بسته شده می‌شود.

5- تحلیل کامپوزیت

برای نشان دهنده معادلات حاکم بر تحلیل کامپوزیت پل ساندویچی در ابتدا معادلات حاکم بر تحلیل کامپوزیت پل ساندویچی گرفته می‌شود.

6- حل تحلیل انتشار توده پل ساندویچی مركب با لایه چینی متعادل

برای نشان دهنده معادلات حاکم بر تحلیل کامپوزیت پل ساندویچی در ابتدا معادلات حاکم بر تحلیل کامپوزیت پل ساندویچی گرفته می‌شود.

جدول 2: خواص مدول یکه در پل ساندویچی مركب

<table>
<thead>
<tr>
<th>لایه</th>
<th>E1</th>
<th>E2</th>
<th>G12</th>
<th>G23</th>
<th>G13</th>
<th>ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.11 GPa</td>
<td>7.77 GPa</td>
<td>0.53 GPa</td>
<td>0.34 GPa</td>
<td>1.34 GPa</td>
<td>95 GPa</td>
</tr>
<tr>
<td>2</td>
<td>0.32 GPa</td>
<td>130 GPa</td>
<td>0.05 GPa</td>
<td>0.08 GPa</td>
<td>0.49 GPa</td>
<td>1800 kg/m³</td>
</tr>
</tbody>
</table>

مربوط به: مدل سیستم کامپوزیت، مرکز 1395، صفحه 16، دوره 1395، مهندسی مکانیک، مرکز 1395، صفحه 16، دوره 1395، مهندسی مکانیک.
Table 5 Material properties of a composite sandwich panel with honeycomb core

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{11}</td>
<td>19.5 GPa</td>
<td>19.5 GPa</td>
<td>60 GPa</td>
<td>60 GPa</td>
</tr>
<tr>
<td>E_{22}</td>
<td>6 GPa</td>
<td>6 GPa</td>
<td>60 GPa</td>
<td>60 GPa</td>
</tr>
<tr>
<td>G_{12}</td>
<td>3.2 GPa</td>
<td>3.2 GPa</td>
<td>0.5 GPa</td>
<td>0.5 GPa</td>
</tr>
</tbody>
</table>

Table 6 Comparing the dimensionless buckling load of the laminated sandwich panel with honeycomb core

<table>
<thead>
<tr>
<th>N_{cr}</th>
<th>N_{cr} / a</th>
<th>N_{cr} / b</th>
<th>N_{cr} / h</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.150</td>
<td>0.100</td>
<td>0.075</td>
<td>0.050</td>
</tr>
<tr>
<td>6.696</td>
<td>5.704</td>
<td>4.852</td>
<td>3.742</td>
</tr>
<tr>
<td>6.782</td>
<td>5.762</td>
<td>4.831</td>
<td>3.739</td>
</tr>
<tr>
<td>7.010</td>
<td>5.710</td>
<td>4.864</td>
<td>3.750</td>
</tr>
<tr>
<td>7.059</td>
<td>5.745</td>
<td>4.873</td>
<td>3.759</td>
</tr>
<tr>
<td>7.483</td>
<td>5.557</td>
<td>4.785</td>
<td>3.740</td>
</tr>
<tr>
<td>6.755</td>
<td>5.626</td>
<td>4.830</td>
<td>3.765</td>
</tr>
<tr>
<td>10.341</td>
<td>9.461</td>
<td>4.647</td>
<td>3.765</td>
</tr>
<tr>
<td>11.102</td>
<td>9.329</td>
<td>4.561</td>
<td>4.734</td>
</tr>
<tr>
<td>10.221</td>
<td>9.102</td>
<td>4.460</td>
<td>4.646</td>
</tr>
<tr>
<td>10.216</td>
<td>9.216</td>
<td>4.439</td>
<td>4.703</td>
</tr>
</tbody>
</table>

Table 3 Comparing dimensionless natural frequencies of a composite sandwich panel with cross ply lay-up

<table>
<thead>
<tr>
<th>f_1</th>
<th>f_2</th>
<th>f_3</th>
<th>f_4</th>
<th>f_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.28</td>
<td>14.74</td>
<td>14.27</td>
<td>14.08</td>
<td>(1, 1)</td>
</tr>
<tr>
<td>28.69</td>
<td>26.83</td>
<td>26.31</td>
<td>25.88</td>
<td>(1, 1)</td>
</tr>
<tr>
<td>30.01</td>
<td>27.53</td>
<td>27.04</td>
<td>26.52</td>
<td>(2, 1)</td>
</tr>
<tr>
<td>38.86</td>
<td>35.60</td>
<td>34.95</td>
<td>34.32</td>
<td>(2, 1)</td>
</tr>
</tbody>
</table>

Table 4 Comparing dimensionless natural frequencies of a composite sandwich panel with angle ply lay-up

<table>
<thead>
<tr>
<th>f_{cr}</th>
<th>f_{cr} / a</th>
<th>f_{cr} / b</th>
<th>f_{cr} / h</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.55</td>
<td>6.09</td>
<td>15.53</td>
<td>15.32</td>
</tr>
<tr>
<td>4.85</td>
<td>6.09</td>
<td>27.36</td>
<td>27.09</td>
</tr>
<tr>
<td>4.28</td>
<td>6.09</td>
<td>27.36</td>
<td>27.09</td>
</tr>
<tr>
<td>3.76</td>
<td>6.09</td>
<td>36.93</td>
<td>36.26</td>
</tr>
</tbody>
</table>

Table 5 Material properties of a composite sandwich panel with honeycomb core

- E_{11}: Young's modulus in the fiber direction,
- E_{22}: Young's modulus in the transverse direction,
- G_{12}: Shear modulus between the fiber and transverse directions.

Table 6 Comparing the dimensionless buckling load of the laminated sandwich panel with honeycomb core

- N_{cr}: Buckling load,
- a, b, h: Geometrical parameters of the sandwich panel.

In Table 3, the dimensionless natural frequencies are compared for a composite sandwich panel with cross ply lay-up.

In Table 4, the dimensionless natural frequencies are compared for a composite sandwich panel with angle ply lay-up.

Note: Mixed layerwise theory

Note: Higher order shear deformation theory
In the presence of a composite sandwich panel, the buckling load with the length to panel thickness ratio

\[a/b \]

is given by [106, 1395].

Variation of dimensionless buckling load with the length to width ratio

Fig. 2

Variation of dimensionless buckling load with the length to panel thickness ratio

Fig. 3

Table 7 Material properties of a composite panel

<table>
<thead>
<tr>
<th>E_1 (GPa)</th>
<th>E_2 (GPa)</th>
<th>G_{12} (GPa)</th>
<th>ν_{12}</th>
</tr>
</thead>
<tbody>
<tr>
<td>68.294</td>
<td>6.6395</td>
<td>2.475</td>
<td>0.3</td>
</tr>
<tr>
<td>72.136</td>
<td>6.6395</td>
<td>2.475</td>
<td>0.3</td>
</tr>
<tr>
<td>72.136</td>
<td>6.6395</td>
<td>2.475</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Table 8 Comparing the critical dynamic pressure for the laminated panel

<table>
<thead>
<tr>
<th>a/b</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.990</td>
<td>0.990</td>
<td>0.990</td>
</tr>
<tr>
<td>0.995</td>
<td>0.995</td>
<td>0.995</td>
</tr>
<tr>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Table 9 Material properties of a composite sandwich panel

<table>
<thead>
<tr>
<th>E_1</th>
<th>E_2</th>
<th>ν_{12}</th>
</tr>
</thead>
<tbody>
<tr>
<td>68.294</td>
<td>6.6395</td>
<td>2.475</td>
</tr>
<tr>
<td>72.136</td>
<td>6.6395</td>
<td>2.475</td>
</tr>
<tr>
<td>72.136</td>
<td>6.6395</td>
<td>2.475</td>
</tr>
</tbody>
</table>

References

1. [106, 1395].
3-6 بررسی اثر زاویه الاف بر روی پاسخ کمان با دومحرقه ی یک ساندویچی مرکب

در این بخش بررسی اثر زاویه الاف بر روی رفتار کمان با دومحرقه یک ساندویچی مرکب مطرحی می‌شود. آزمایشات نشان دهنده که خوشه‌هایی با زاویه الافی بین 0° و 90° دارای صداهای میان‌رده‌ای هستند.

4-6 بررسی اثر تغییر خواص مواجهه ای یک فیبر بیان

SANDBWICH

در این بخش بررسی اثر زاویه الاف بر روی پاسخ فیبر بیان ساندویچی مرکب مطرح می‌شود. آزمایشات نشان می‌دهند که خوشه‌هایی با زاویه الافی بین 0° و 90° دارای صداهای میان‌رده‌ای هستند.
Fig. 8 Variation of dimensionless critical dynamic pressure with the thickness ratio of the bottom to the top face sheets

Table 10 Material properties of a sandwich panel

<table>
<thead>
<tr>
<th>Material properties</th>
<th>Sandwich panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_1 = 70$ GPa</td>
<td>$G_{12} = G_{13} = G_{23} = 26$ GPa</td>
</tr>
<tr>
<td>$E_2 = 10.34$ GPa</td>
<td>$v_1 = v_2 = 0.22, v_3 = 0.49, p = 16.27$ kg/m2</td>
</tr>
</tbody>
</table>

Fig. 9 Variation of dimensionless critical dynamic pressure with the thickness ratio of the bottom to the top face sheets

6-10 Experiment results

- Plot of the thickness ratio of the bottom to the top face sheets
- Table 10: Material properties of a sandwich panel

Fig. 7 Variation of dimensionless critical dynamic pressure with the face sheets to the core elastic modulus ratio

Fig. 6 Plot of the thickness ratio of the bottom to the top face sheets
\[L_{14} = -Y_{14}^{ii} \frac{\partial^2}{\partial x^2} - Y_{14}^{i} \frac{\partial}{\partial x} - 2Y_{14}^{ii} \frac{\partial^2}{\partial x \partial y} \]

\[\begin{align*}
(\rho_{14}^i)_{ij} = & \sum_{k=1}^{n_1} Q^i_k (1, z_1, z_2) dz_1 \\
& = \frac{h_{i/2}}{h_{i/2}} \\
& \int \rho_{14}^i dz_1 (1, z_1, z_2, z_3) dz_3
\end{align*} \]

\[\begin{align*}
L_{nt} = & \int \rho_{nt}^i dz_1 \quad \text{where} \quad \rho_{nt}^i = 0.123 \]

\(\text{References} \]

[12] H. H. Ibrahim, H. H. Yoo, Nonlinear flutter oscillations of composite shallow shells subject to aerodynamic and thermal

\[h_{i/2} = \frac{h_{i/2}}{h_{i/2}} \]

\[\int \rho_{nt}^i dz_1 \quad \text{where} \quad \rho_{nt}^i = 0.123 \]

\[\begin{align*}
L_{nt} = & \int \rho_{nt}^i dz_1 \quad \text{where} \quad \rho_{nt}^i = 0.123 \]

\[\begin{align*}
L_{nt} = & \int \rho_{nt}^i dz_1 \quad \text{where} \quad \rho_{nt}^i = 0.123 \]

\[\text{References} \]

[12] H. H. Ibrahim, H. H. Yoo, Nonlinear flutter oscillations of composite shallow shells subject to aerodynamic and thermal
loads, 13th International Conference on Aerospace Sciences and Aviation Technology, Cairo, Egypt, May 26–28, 2009.

