1- Department of Mechanical Engineering, Iranian Research Organization for Science and Technology (IROST)
2- Department of Mechanical Engineering, Faculty of Engineering, Kharazmi University , keymasi@khu.ac.ir
Abstract: (517 Views)
In many wheeled robot applications, in addition to accurate position control, dimensional and weight limitations are also important. The limitation of weight and dimensions means that it is not possible to use arbitrarily large actuators. On the other hand, accurate and fast tracking usually requires high control gains and, as a result, large control inputs. If the control input exceeds the saturation limit of the operator, in addition to increasing the tracking error, it may lead to robot instability in some cases. Therefore, it will be precious to provide a control method that can simultaneously provide high control accuracy and guarantee the robot's stability, taking into account the saturation limit of the actuators (speed and torque) in a predetermined manner. This issue has been addressed in the present study. The proposed control includes two parts: a kinematic controller and a dynamic controller. The kinematic control design is based on the Lyapunov approach, which can adjust the speed saturation limit of the actuators. For dynamic control, the robot velocity components are considered as control reference values and the robot wheel torque is considered as control inputs. In the dynamic control design, the torque saturation limit of the actuators is included in a predetermined way. To evaluate the performance of the proposed nonlinear control, various analyses were performed on the wheeled robot. The results showed that the proposed control algorithm while guaranteeing stability and following the path with high accuracy, has also fully met the requirements of the actuators’ saturation limits
Article Type:
Original Research |
Subject:
Robotic Received: 2024/10/9 | Accepted: 2024/12/2 | Published: 2024/09/22