Studying the impact of caulking modern windows on air infiltration rate and indoor air quality

Danial Hakimi Rad¹, Behrouz Mohammad Kari², Mehdi Maerefat³

1: Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran.
2: Energy, Acoustic & Light Department of Road, Housing & Urban Development Research Center (BHRC), Tehran, Iran.
3: P.O.B. 14115-111 Tehran, maerefat@modares.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 16 August 2016
Accepted 14 September 2016
Available Online: 22 October 2016

Keywords:
Air infiltration
Modern windows
Air sealing
Indoor air quality IAQ
CO2 concentration

ABSTRACT

Nowadays, modern windows with standard caulking are used in most buildings. Study of air infiltration and caulking these windows in several ways such as energy, indoor air quality, thermal comfort and pollution entering in the building is important. This study consists of two parts, first, the airtight performance of various window gaskets is experimentally investigated. For this purpose, 8 different types of gaskets are used and modern window gap is simulated, and air infiltration rates are measured at different pressure differences. The results show that the airtight performance of various gaskets is different. Also, experimental results are fitted by power law equation, and relations and coefficients are used to calculate air infiltration rate of modern windows (sealed windows), respectively. In the second section due to the very low air infiltration rate of the experimental results, indoor air quality is assessed by numerical modeling methods. In the sample model, air infiltration of modern windows as ventilation and human breathing as a source of CO2 is simulated. Indoor air quality is weighted by the CO2 concentration in the interior space. The results show that the air infiltration of window gaps to ensure air quality during the 8 hours is insufficient. Then, assuming uniform distribution of CO2 in the sample space, and solving the transfer species equation for the problem situation, analytical equation for evaluating indoor air quality were achieved. Analytical results match numerical simulation results exactly. The results of this study can be very useful for HVAC engineers.

Please cite this article using:
D. Hakimi Rad, B. Mohammad Kari, M. Maerefat, Study the impact of caulking modern windows on air infiltration rate and indoor air quality, Modares Mechanical Engineering, Vol. 16, No. 11, pp. 23-34, 2016 (in Persian)
مطالعه نحوه واکنش تیوازین در سیستم‌های نوین بر درخواست‌های پیش‌بینی و کنترل هوا داخل

این بحث به اثبات آزمایش‌های انجام‌شده در سیستم‌های نوین بر درخواست‌های پیش‌بینی و کنترل هوا داخل می‌پردازد.

درباره کمیسیون و همکاران

سالنده تیوازین در سیستم‌های نوین بر درخواست‌های پیش‌بینی و کنترل هوا داخل

22

1) NIOSH

2) Gasket seal

3) Stack effect

4) ASHRAE

منابع

نمایندگان مقاله در پژوهش پیش‌بینی داده [6] اولین همکار مشهور درهای در نتایج این بررسی کرد. در زمان دریافت درخواست‌های پیش‌بینی، ویژه‌ها، مجموعه‌ها و مراحل استاندارد این تیوازین در سیستم‌های نوین بر درخواست‌های پیش‌بینی و کنترل هوا داخل

2) Gasket seal

3) Stack effect

4) ASHRAE

منابع

نمایندگان مقاله در پژوهش پیش‌بینی داده [6] اولین همکار مشهور درهای در نتایج این بررسی کرد. در زمان دریافت درخواست‌های پیش‌بینی، ویژه‌ها، مجموعه‌ها و مراحل استاندارد این تیوازین در سیستم‌های نوین بر درخواست‌های پیش‌بینی و کنترل هوا داخل

2) Gasket seal

3) Stack effect

4) ASHRAE

منابع

نمایندگان مقاله در پژوهش پیش‌بینی داده [6] اولین همکار مشهور درهای در نتایج این بررسی کرد. در زمان دریافت درخواست‌های پیش‌بینی، ویژه‌ها، مجموعه‌ها و مراحل استاندارد این تیوازین در سیستم‌های نوین بر درخواست‌های پیش‌بینی و کنترل هوا داخل

2) Gasket seal

3) Stack effect

4) ASHRAE

منابع

نمایندگان مقاله در پژوهش پیش‌بینی داده [6] اولین همکار مشهور درهای در نتایج این بررسی کرد. در زمان دریافت درخواست‌های پیش‌بینی، ویژه‌ها، مجموعه‌ها و مراحل استاندارد این تیوازین در سیستم‌های نوین بر درخواست‌های پیش‌بینی و کنترل هوا داخل

2) Gasket seal

3) Stack effect

4) ASHRAE

منابع

نمایندگان مقاله در پژوهش پیش‌بینی داده [6] اولین همکار مشهور درهای در نتایج این بررسی کرد. در زمان دریافت درخواست‌های پیش‌بینی، ویژه‌ها، مجموعه‌ها و مراحل استاندارد این تیوازین در سیستم‌های نوین بر درخواست‌های پیش‌بینی و کنترل هوا داخل

2) Gasket seal

3) Stack effect

4) ASHRAE

منابع

نمایندگان مقاله در پژوهش پیش‌بینی داده [6] اولین H
3- شیب‌سازی تعریف نرخ نفوذ هوا

3-1- مزیتی از نواع بر سر نمایشگر در دستگاه‌ها

لسون‌های درونی دو نمایشی در دستگاه‌های اصلی برای مشاهده سیمپل به حرکت بروده و در هر گام نرخ نفوذ هوا و تغییرات سیمپل انجام می‌دهند. این نمایشگران برای مشاهده سیمپل در دستگاه‌ها استفاده می‌شوند.

3-2- استفاده در استاندارد ملی ایران

استاندارد ملی ایران و آلمان برای اخلاق فشار به صورت بلعی داده می‌شود [17,18]. چون در تحقیق باره‌ای از این استاندارد ملی ایران مورد استفاده قرار گرفته است، در این استاندارد ملی ایران نمایشگر حاوی یک محور مرجع مناسب و بی‌هوش یک‌پیوسته از در شرایط یک از کلیه دستگاه‌های برق محوری استفاده می‌شود.

3-3- شیب‌سازی تعریف نرخ نفوذ هوا

شکل 1 نشان دهنده مداخله با دستگاه آزمایش است. در این شکل، مسند سیمپل به درون دستگاه عبور می‌کند. رابطه میان مسیر دیده‌شده و دستگاه عبور می‌باشد.

شکل 2 نشان دهنده دستگاه آزمایش است. در این شکل، سیمبول با دستگاه آزمایش عبور می‌کند.

شکل 3 نشان دهنده دستگاه برطرف‌های
3- تجزیه و تحلیل خطای اندازه‌گیری

این پژوهش با استفاده از نمودار رسمی 7822 ایران انجام شده است و جهت اطمینان از صحبت‌های دستگاه‌های دارای خطای نسبت به پایه این حرارت خطا انجام شده، بین نیروی آزمایشی در برخی موارد درجه دهنده شرایط بسیار خوب انجام شده است نشان دهنده خطا در این اندازه‌گیری نسبت به نقطه داخلی به‌طور کلی در بافت هایی که در جدول 2 مقدار ξ و σ با روابط (5-3) محاسبه می‌شوند.[18]

\[
\xi = \frac{1}{N} \sum_{i=1}^{N} x_i
\]

\[
\sigma = \left[\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2 \right]^{1/2}
\]

\[
e = \frac{\max(x_i) - \min(x_i)}{N} \times 100
\]

4- شیب‌سازی عضلانی کیفیت هوای

برای ارزیابی کیفیت هوای داخل باید میدان هر سمت، دما و کسر جرمی گونه‌ها موجود تغییر گونه‌ها با انرژی و گونه‌ها حل به‌طور آزمایشی جریان‌هایی از مدل توربولنتی ضرایب عضلانی‌های داخلی استفاده شده است این مدل برای جریان داخل سیالات اتیل‌فیراتر کم نتایج قابل فیوز دارد. جهت مدلسازی مدل‌سازی گونه‌ها در موارد اجوای ایران[18] استفاده شده است. این ترکیب آنالیسی کیفیت هوای جریان

جدول 2 پایین خطای در مقدار Q_i و E_i

<table>
<thead>
<tr>
<th>Q_i</th>
<th>E_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.35</td>
<td>0.35</td>
</tr>
</tbody>
</table>

5- شکل 4 سطح مقطع و نام‌گذاری درون‌های

شکل 4 سطح مقطع و نام‌گذاری درون‌های

\[
Q = Q_1 - Q_0
\]

1. Indoor zero equation
2. Airpak v3
3. Ethylene propylene diene monomer
4. Thermoplastic vulcanizates-thermoplastic elastomers
به عنوان نمونه شیبی‌سازی دهه، تست‌های دقیق و مقایسه آن‌ها با محاسبات محاسباتی به‌کار می‌رفته‌است. مدل‌سازی این سیمپلیکس به صورت دقیق و کامل استفاده شده است. همچنین، حالت شبکه و پایداری سبد رادر را نشان داده شده است. مدل‌سازی‌های دو بیش از گرفته‌های 20 درجه سانتی‌گراد استفاده 350 ppm CO2 غلظت در هوا می‌شود.

(6) برای مقدار استاندارد، نویسندگان جریان درون اتاق زیر ارشدیمیس با صورت رابطه

\[R_a = 1356 \times 10^{11}, \quad Pr = 0.74 \]

(7) با توجه به مقایسه دو ارشدیمیس، برای چرخش جریان در محدوده توربولانس است و باعث یک جریان دیگر می‌شود. این نتایج از گرفته‌های 11 استفاده کردیم. برای جریان‌های دیگر، برای میان‌رده‌ها، نمونه‌های 3-4 و 5-7 برای ارزیابی قابلیت دقیق و کارایی از آن‌ها بهره‌مند است. این مقایسه با مدل‌های دیگری که بر اساس قابلیت کوچک بودن مقدار سرعت و تغییراتی که به وجود افت فشار گرد کرده در حالت دقت مشابه استفاده شد. نطاق‌ها به‌طور دقیق و کامل استفاده می‌شود.

(8) استفاده شده است.

Table 3 Dimensions and location details Model

<table>
<thead>
<tr>
<th>x (m)</th>
<th>y (m)</th>
<th>z (m)</th>
<th>محل قرارگیری جزئیات مدل</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>0.5</td>
<td>1.0</td>
<td>زیر اتاق</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>0.5</td>
<td>درب</td>
</tr>
<tr>
<td>0.5</td>
<td>1.5</td>
<td>0.0</td>
<td>پنجره</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>1.5</td>
<td>در بیرون</td>
</tr>
</tbody>
</table>

شکل 6 نشان داده مدل استفاده‌ای شیبی‌سازی شده است. مدل‌سازی دو بیش از گرفته‌های 20 درجه سانتی‌گراد استفاده 350 ppm CO2 غلظت در هوا می‌شود.

(6) برای مقدار استاندارد، نویسندگان جریان درون اتاق زیر ارشدیمیس با صورت رابطه

\[R_a = 1356 \times 10^{11}, \quad Pr = 0.74 \]

(7) با توجه به مقایسه دو ارشدیمیس، برای چرخش جریان در محدوده توربولانس است و باعث یک جریان دیگر می‌شود. این نتایج از گرفته‌های 11 استفاده کردیم. برای جریان‌های دیگر، برای میان‌رده‌ها، نمونه‌های 3-4 و 5-7 برای ارزیابی قابلیت دقیق و کارایی از آن‌ها بهره‌مند است. این مقایسه با مدل‌های دیگری که بر اساس قابلیت کوچک بودن مقدار سرعت و تغییراتی که به وجود افت فشار گرد کرده در حالت دقت مشابه استفاده شد. نطاق‌ها به‌طور دقیق و کامل استفاده می‌شود.

(8) استفاده شده است.

Table 3 Dimensions and location details Model

<table>
<thead>
<tr>
<th>x (m)</th>
<th>y (m)</th>
<th>z (m)</th>
<th>محل قرارگیری جزئیات مدل</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>0.5</td>
<td>1.0</td>
<td>زیر اتاق</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>0.5</td>
<td>درب</td>
</tr>
<tr>
<td>0.5</td>
<td>1.5</td>
<td>0.0</td>
<td>پنجره</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>1.5</td>
<td>در بیرون</td>
</tr>
</tbody>
</table>

شکل 6 نشان داده مدل استفاده‌ای شیبی‌سازی شده است. مدل‌سازی دو بیش از گرفته‌های 20 درجه سانتی‌گراد استفاده 350 ppm CO2 غلظت در هوا می‌شود.
CO\(_2\) و سرعت در شرایط پایدار در مختصات \(x = 1.5, z = 1.5\) و برخی ارتفاعات از که به ترتیب در شکل‌های 7 و 8 رسم شده است این نتایج برای فضای نموده شکل 6 به عنوان پایان مقدار به شکل‌های 7 و 8 مشخص است. نمونه‌ها با افزایش عداد سلول‌ها خواصی برای شیب‌های با استقلال نتایج از آن‌ها شکل است.

4-4-1- ابزاریونجی روش مدل‌سازی عدید
پیش از آنچه نتایج کیفی‌های ابزاریونجی روش مدل‌سازی نرم‌افزار مورد استفاده در طرح این جهت ابزاریونجی نیاز به شبیه‌سازی پوئن‌الینگی است که از نظر شرایط محیط و نوع حربان تشخیص مسیره مواد بررسی کاهش و ترجیحاً نتایج تجربی داشته باشد، بدین منظور از نتایج تجربی ارائه شده توسط زو و همکاران [20] استفاده و مدل مورد استفاده در شکل 9 نشان داده شده است. نتایج توزیع سرعت و هم در مرکز اتاق و بخش اضافه حیاتی در مدل‌سازی عدید به ترتیب در شکل‌های 10 و 11 با نتایج تجربی مرجع [20] مقایسه شده است.

در شکل‌های 10 و 11، مشاهده می‌شود که نتایج حاصل از شبیه‌سازی عدید تا حد مساوی نتایج تجربی ای را پوشش می‌دهند و می‌توان از صحبت روش حل و مدل‌سازی برای نرم‌افزار اطلاعی حاصل کرد.

5- نتایج و بحث
5-1- نتایج نرخ نفوذ هوا
از آرایشینه‌ها برای در این مسیری به نظر می‌رسد که در دو روز مورد سطح شده است. با آرایش بر در Z، شکل انجام شده است. با آرایش بر در Z، شکل نیز راج‌ترین در بین قاب و یا پیچ به‌طور عمده و ترتیب کلی نرخ نفوذ هوا بر اساس این نوع در بر ارائه می‌شود. فشارهای

نمونه‌سازی کامپیوتری، پیام 1395، دوره 16، شماره 11
ماطعه تأثیر درون‌بندی پنج‌حرفا و نون بر درخ نفود هوا و کیفیت هوای داخلی

شکل 12: نرخ نفود هوا بر حسب اختلاف فشار برای درز مستطیل

شکل 13: نرخ نفود هوا بر حسب اختلاف فشار برای جهت‌گیری‌های مختلف درون‌بندی

شکل 14: نرخ نفود هوا بر حسب اختلاف فشار برای درز Z

شکل Z

شکل 2-1-5

شکل 3

شکل 4

شکل 5

شکل 6

شکل 7

شکل 8

شکل 9

شکل 10

شکل 11

شکل 12

شکل 13

شکل 14

شکل 15

شکل 16

شکل 17

شکل 18

شکل 19

شکل 20

شکل 21

شکل 22

شکل 23

شکل 24

شکل 25

شکل 26

شکل 27

شکل 28

شکل 29

شکل 30

شکل 31

شکل 32

شکل 33

شکل 34

شکل 35

شکل 36

شکل 37

شکل 38

شکل 39

شکل 40

شکل 41

شکل 42

شکل 43

شکل 44

شکل 45

شکل 46

شکل 47

شکل 48

شکل 49

شکل 50

شکل 51

شکل 52

شکل 53

شکل 54

شکل 55

شکل 56

شکل 57

شکل 58

شکل 59

شکل 60

شکل 61

شکل 62

شکل 63

شکل 64

شکل 65

شکل 66

شکل 67

شکل 68

شکل 69

شکل 70

شکل 71

شکل 72

شکل 73

شکل 74

شکل 75

شکل 76

شکل 77

شکل 78

شکل 79

شکل 80

شکل 81

شکل 82

شکل 83

شکل 84

شکل 85

شکل 86

شکل 87

شکل 88

شکل 89

شکل 90

شکل 91

شکل 92

شکل 93

شکل 94

شکل 95

شکل 96

شکل 97

شکل 98

شکل 99

شکل 100

شکل 101

شکل 102

شکل 103

شکل 104

شکل 105

شکل 106

شکل 107

شکل 108

شکل 109

شکل 110

شکل 111

شکل 112

شکل 113

شکل 114

شکل 115

شکل 116

شکل 117

شکل 118

شکل 119

شکل 120

شکل 121

شکل 122

شکل 123

شکل 124

شکل 125

شکل 126

شکل 127

شکل 128

شکل 129

شکل 130

شکل 131

شکلا 132

شکلا 133

شکلا 134

شکلا 135

شکلا 136

شکلا 137

شکلا 138

شکلا 139
Table 4 Values of coefficients average \(c \), \(n \) about relate 8

<table>
<thead>
<tr>
<th>n</th>
<th>(c)</th>
<th>(\sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.800</td>
<td>6.98E-03</td>
<td>1.841</td>
</tr>
<tr>
<td>1.04E-03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 15 The average results of air infiltration rate for straight and \(Z \) shape gap

Fig. 16 Stream lines in the room at the cut plane \(x = 1.5 \) m

\(z \) shape gap

Strait gap

\[x = 1.5 \text{ m} \]

\[\text{Plume} \]
نتیجه‌شده که تغییرات غلتکی CO₂ در اتاق بسیار کم است و می‌توان توزیع غلتک را با کیفیت‌های در نظر گرفت که در ادامه جمله مکالمه‌های انتقال گونه برای ارزیابی کیفیت‌های آینه می‌شود.

با توجه به نظر گرفته این اثربخشی می‌توان مدلی به صورت شکل ۲۰ برخی و نرسیده به طرح خروجی و نرخ تغییر مولی و نرخ CO₂ غلتک در هوا در اتاقی که در اتاقی می‌توان غلتک CO₂ در خروجی وارد یا نوشت با غلتک CO₂ هوا اتاق در نظر گرفته با نسبت کننده به غلتک در اتاق (GR) است. استفاده از این رابطه (۹) بایستی برای غلتک در اتاق به صورت

\[
V \frac{dC_R}{dt} + C_R(Q_{inf} + Q_R) = Q_{inf}C_{inf} + Q_RQ_B
\]

با حل معادله (۹) بر حسب زمان و قرار دادن شرایط اولیه به صورت

\[
C_R(0) = C_{inf}
\]

در روابط ارائه شده چنین نتایج نشان داده از جمله مکالمه‌های غلتک در اتاق در اثر استفاده از شیمی‌سازی عضوی در دایره‌سنجی ساخت عضو می‌شود.

در شکل ۲۱ مشاهده می‌شود که نتایج جمله مکالمه با دقت عالی بالا منطق‌های نما یا سایر برتری‌ها به علائم ۲۰ مشخص است. با توجه به شکل ۲۱ می‌توان با توجه به تغییر غلتک که در اتاق میزان نمایش دهنده کاهش غلتک در این مدل بوده از نظر به آنتی‌بیوکتیک و همچنین

\[
\varepsilon = \frac{C_{out} - C_{inf}}{C_{out} - C_{inf}}
\]

در رابطه (۱۱) مقدار بین ۷ hitter و اگر یک مقدار به عدد ۱ تبدیل نشده‌اند، نهایت به وعدهٔ انتقال و نبود غلتک که برای غلتک در ACH ۱۰ می‌توان با رابطه (۱۰) سمتی بوده از نظر به‌طور غلط که از نظر به‌طور غلط استفاده رد گردی این برای این مقدار ۱۰ نسبت غلتک ۱۰ می‌توان از آنتی‌بیوکتیک ماهیت در مدت زمان ۸ ثانیه و نرخ یک نفر به سطح همچنین

\[
\varepsilon = \frac{C_{out} - C_{inf}}{C_{out} - C_{inf}}
\]

در رابطه (۱۱) مقدار بین ۷ hitter و اگر یک مقدار به عدد ۱ تبدیل نشده‌اند، نهایت به وعدهٔ انتقال و نبود غلتک که برای غلتک در ACH ۱۰ می‌توان با رابطه (۱۰) سمتی بوده از نظر به‌طور غلط که از نظر به‌طور غلط استفاده رد گردی این برای این مقدار ۱۰ نسبت غلتک ۱۰ می‌توان از آنتی‌بیوکتیک ماهیت در مدت زمان ۸ ثانیه و نرخ یک نفر به سطح همچنین

\[
\varepsilon = \frac{C_{out} - C_{inf}}{C_{out} - C_{inf}}
\]

در رابطه (۱۱) مقدار بین ۷ hitter و اگر یک مقدار به عدد ۱ تبدیل نشده‌اند، نهایت به وعدهٔ انتقال و نبود غلتک که برای غلتک در ACH ۱۰ می‌توان با رابطه (۱۰) سمتی بوده از نظر به‌طور غلط که از نظر به‌طور غلط استفاده رد گردی این برای این مقدار ۱۰ نسبت غلتک ۱۰ می‌توان از آنتی‌بیوکتیک ماهیت در مدت زمان ۸ ثانیه و نرخ یک نفر به سطح همچنین

\[
\varepsilon = \frac{C_{out} - C_{inf}}{C_{out} - C_{inf}}
\]

در رابطه (۱۱) مقدار بین ۷ hitter و اگر یک مقدار به عدد ۱ تبدیل نشده‌اند، نهایت به وعدهٔ انتقال و نبود غلتک که برای غلتک در ACH ۱۰ می‌توان با رابطه (۱۰) سمتی بوده از نظر به‌طور غلط که از نظر به‌طور غلط استفاده رد گردی این برای این مقدار ۱۰ نسبت غلتک ۱۰ می‌توان از آنتی‌بیوکتیک ماهیت در مدت زمان ۸ ثانیه و نرخ یک نفر به سطح همچنین

\[
\varepsilon = \frac{C_{out} - C_{inf}}{C_{out} - C_{inf}}
\]

در رابطه (۱۱) مقدار بین ۷ hitter و اگر یک مقدار به عدد ۱ تبدیل نشده‌اند، نهایت به وعدهٔ انتقال و نبود غلتک که برای غلتک در ACH ۱۰ می‌توان با رابطه (۱۰) سمتی بوده از نظر به‌طور غلط که از نظر به‌طور غلط استفاده رد گردی این برای این مقدار ۱۰ نسبت غلتک ۱۰ می‌توان از آنتی‌بیوکتیک ماهیت در مدت زمان ۸ ثانیه و نرخ یک نفر به سطح همچنین

\[
\varepsilon = \frac{C_{out} - C_{inf}}{C_{out} - C_{inf}}
\]

در رابطه (۱۱) مقدار بین ۷ hitter و اگر یک مقدار به عدد ۱ تبدیل نشده‌اند، نهایت به وعدهٔ انتقال و نبود غلتک که برای غلتک در ACH ۱۰ می‌توان با رابطه (۱۰) سمتی بوده از نظر به‌طور غلط که از نظر به‌طور غلط استفاده رد گردی این برای این مقدار ۱۰ نسبت غلتک ۱۰ می‌توان از آنتی‌بیوکتیک ماهیت در مدت زمان ۸ ثانیه و نرخ یک نفر به سطح همچنین

\[
\varepsilon = \frac{C_{out} - C_{inf}}{C_{out} - C_{inf}}
\]

در رابطه (۱۱) مقدار بین ۷ hitter و اگر یک مقدار به عدد ۱ تبدیل نشده‌اند، نهایت به وعدهٔ انتقال و نبود غلتک که برای غلتک در ACH ۱۰ می‌توان با رابطه (۱۰) سمتی بوده از نظر به‌طور غلط که از نظر به‌طور غلط استفاده رد گردی این برای این مقدار ۱۰ نسبت غلتک ۱۰ می‌توان از آنتی‌بیوکتیک ماهیت در مدت زمان ۸ ثانیه و نرخ یک نفر به سطح همچنین

\[
\varepsilon = \frac{C_{out} - C_{inf}}{C_{out} - C_{inf}}
\]

در رابطه (۱۱) مقدار بین ۷ hitter و اگر یک مقدار به عدد ۱ تبدیل نشده‌اند، نهایت به وعدهٔ انتقال و نبود غلتک که برای غلتک در ACH ۱۰ می‌توان با رابطه (۱۰) سمتی بوده از نظر به‌طور غلط که از نظر به‌طور غلط استفاده رد گردی این برای این مقدار ۱۰ نسبت غلتک ۱۰ می‌توان از آنتی‌بیوکتیک ماهیت در مدت زمان ۸ ثانیه و نرخ یک نفر به سطح Hefte در اتاق نمایش دهنده تأثیر گذاری باشد. زیرا انتظار می‌رود توزیع غلتک CO₂ در اتاق بر دو عنوان تأثیر گذاری باشد. زیرا انتظار می‌رود توزیع غلتک CO₂ در اتاق بر دو عنوان تأثیر گذاری باشد. زیرا انتظار می‌رود توزیع غلتک CO₂ در اتاق بر دو عنوان تأثیر گذاری باشد. زیرا انتظار می‌رود توزیع غلتک CO₂ در اتاق بر دو عنوان تأثیر گذاری باشد. زیرا انتظار می‌رود توزیع غلتک CO₂ در اتاق بر دو عنوان تأثیر گذاری باشد. زیرا انتظار M. توزیع 3.5- عضویه‌های کاربردی

در این بخش خلاصه‌ای از نتایج به صورت یک دستورالعمل ساده با دیدنگاه
Fig. 18 Distribution of CO₂ concentration in different time period. a) \(t = 2 \) h, b) \(t = 4 \) h, c) \(t = 6 \) h, d) \(t = 8 \) h

\[t = 8 \) h \rightarrow \frac{t}{2} = 4 \) h \rightarrow \frac{t}{3} = 2 \) h \rightarrow \frac{t}{4} = 1 \) h

Fig. 19 Distribution of CO₂ concentration after 8 hours for 2 people breathing. a) \(x = 1.5 \), b) \(y = 1.5 \)

\[y = 1.5 \rightarrow x = 1.5 \rightarrow \frac{y}{2} = 0.75 \rightarrow \frac{x}{2} = 0.75 \]
3- با توجه به نرخ پایین نفوذ هوا از پنجره‌های نوین در صورت استفاده از آنها باید تاکید برای تأمین هوای نازک کافی ارائه شود از دریچه کوچکی که در بالای اتاق یک یا دو پنجره کم هزینه است.

4- توصیه‌های کاربردی جهت استفاده مهدسین تأسیسات برای برآورد نرخ نفوذ هوا از پنجره‌های نوین و کمیت هوا داخل اتاق شد.

7- فهرست علائم

- عدد ارشمیدس Ar
- سطح A
- ضریب تابع معادله C
- میزان c
- دیده بار d
- Cr
- D
- E
- F
- G
- H
- I
- J
- K
- L
- M
- N
- O
- P
- Q
- R
- S
- T
- U
- V
- W
- X
- Y
- Z

8- تقدیر و نتیجه‌گیری

از شرکت زند نظامی و مدیرعامل ابن شرکت، آقای آرش‌پور به دلیل موفقیت‌ها و نتایج بالایی که در اجرای این مطالعه داشته‌اند، به استادان و تخصصیان از جمله مهندس مکانیک به عنوان نویسنده آسیب‌پذیر این کتاب‌ها می‌گویند.
mayıت و تهیه درون‌نهایی مورد نیاز در این پژوهش تهیه فرآیند نمایند. شیب همگنی از دکتر رضا مداحیان به دنبال کمک‌های فرآیند ایجادی در روند ایجاد شده‌است.

با توجه به فرآیند از مرکز تحقیقات راه، مسکن و شهرسازی، برای همکاری مؤثر کادر فن آزمایشگاه ارزو در چهت ادامه‌داری تجهیزات و تنظیم سیستم‌های ازدحام کارت لازم برای ایجاد آزمون‌های هاوی‌پری و مورد نیاز تحقیق صورت گرفته.

مراجع