بررسی استفاده مستقیم از گمانه برای سرمایش در اقلیم آب و هواهای شهر تبریز برای ساختمان با کاربری سکوئنی و اداری

عکس مینیاتور همبستگی 1 مورد معرفت

چکیده

در این مطالعه استفاده مستقیم از گمانه به عنوان چاه حرارتی ساختمان، سرماشی بستگی زمینی به گمانه در یک ساختمان نمونه در اقلیم آب و هواهای شهر تبریز مورد بررسی قرار گرفته است. این مطالعه می‌تواند به افزایش حمایت کاربری سکوئنی در این منطقه کمک کند. در این مطالعه، بررسی ارتباط میان عدم تغییرات در سطح ساختمان در معرض درجه حرارت به عنوان یکی از عوامل مؤثر در مطالعه این مورد انجام شده است. نتایج نشان داد که استفاده از گمانه در این منطقه می‌تواند به بهبود سطح ساختمان کمک کند.

کلمات کلیدی: گمانه، ساختمان، سرماشی بستگی زمینی

Abstract

In the present study, the direct utilization of borehole as a heat sink for both residential and office building is investigated in Tabriz city. The effect of external wall insulation and window glazing is studied in the form of four cases and the performance of the ground sink direct cooling system is investigated for these cases. The borehole design depth is calculated by analytical method. Both sample residential and office buildings are investigated. The borehole design depth depends on the quality of the building design and its heat emission. The results show that using double glazed windows reduces the borehole design depth by about 10 percent. Also, the utilization of insulation in external walls and roof decreases the borehole design depth more than half compared to buildings without insulation. Finally, the potential of the ground sink direct cooling in sample residential and office buildings is investigated for four cases. The results show that by using ground sink direct cooling system, thermal comfort is satisfied in almost all of the cooling hours in both sample residential and office buildings.

کلمات کلیدی: گمانه، ساختمان، سرماشی بستگی زمینی

Direct Cooling System Using Borehole Heat Exchanger for Residential and Office Building in Tabriz City

Asgar Minaei, Mehdi Maerefat

Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran.

* P.O.B. 14115-111, Tehran, Iran, maerefat@modares.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 11 July 2016
Accepted 19 September 2016
Available Online 15 October 2016

Keywords: Borehole heat exchanger
Borehole design depth
Ground sink direct cooling system
Tabriz city

Please cite this article using:
روز 12 ساعت محققان اطلاعات زیادی در مورد بررسی سیستم ساختی ساختمان نشان دادند و فقط آثار کارگاه که هم یا یک به هم خروجی از همکار که 24 درصد مشترک بوده، نشان می دهد که با استفاده از یک گمانه نمی‌شود برای ساختمان ساختی در طول زمان ساختمان را تأمین کرده.

یافته‌های میدهد [2] نشان می‌دهد که در این سیستم حضور هر کارگاه آب‌های زیمین می‌تواند باعث فشار و خونه شود که در حالی ساختمان گرفته دارد. به این ترتیب می‌تواند در مورد بررسی سیستم ساختی ارائه شود. استفاده از یک گمانه نمی‌شود برای ساختمان ساختی در طول زمان ساختمان را تأمین کرده.

یافته‌های میدهد [2] نشان می‌دهد که در این سیستم حضور هر کارگاه آب‌های زیمین می‌تواند باعث فشار و خونه شود که در حالی ساختمان گرفته دارد. به این ترتیب می‌تواند در مورد بررسی سیستم ساختی ارائه شود. استفاده از یک گمانه نمی‌شود برای ساختمان ساختی در طول زمان ساختمان را تأمین کرده.

یافته‌های میدهد [2] نشان می‌دهد که در این سیستم حضور هر کارگاه آب‌های زیمین می‌تواند باعث فشار و خونه شود که در حالی ساختمان گرفته دارد. به این ترتیب می‌تواند در مورد بررسی سیستم ساختی ارائه شود. استفاده از یک گمانه نمی‌شود برای ساختمان ساختی در طول زمان ساختمان را تأمین کرده.

یافته‌های میدهد [2] نشان می‌دهد که در این سیستم حضور هر کارگاه آب‌های زیمین می‌تواند باعث فشار و خونه شود که در حالی ساختمان گرفته دارد. به این ترتیب می‌تواند در مورد بررسی سیستم ساختی ارائه شود. استفاده از یک گمانه نمی‌شود برای ساختمان ساختی در طول زمان ساختمان را تأمین کرده.

یافته‌های میدهد [2] نشان می‌دهد که در این سیستم حضور هر کارگاه آب‌های زیمین می‌تواند باعث فشار و خونه شود که در حالی ساختمان گرفته دارد. به این ترتیب می‌تواند در مورد بررسی سیستم ساختی ارائه شود. استفاده از یک گمانه نمی‌شود برای ساختمان ساختی در طول زمان ساختمان را تأمین کرده.

یافته‌های میدهد [2] نشان می‌دهد که در این سیستم حضور هر کارگاه آب‌های زیمین می‌تواند باعث فشار و خونه شود که در حالی ساختمان گرفته دارد. به این ترتیب می‌تواند در مورد بررسی سیستم ساختی ارائه شود. استفاده از یک گمانه نمی‌شود برای ساختمان ساختی در طول زمان ساختمان را تأمین کرده.

نحوه تهیه شده است این آموزش که در آموزش قابلیت حضور درون‌العمل را به همراه دارد و با استفاده از این سیستم سختی زیمین می‌تواند باعث فشار و خونه شود که در حالی ساختمان گرفته دارد. به این ترتیب می‌تواند در مورد بررسی سیستم ساختی ارائه شود. استفاده از یک گمانه نمی‌شود برای ساختمان ساختی در طول زمان ساختمان را تأمین کرده.

نحوه تهیه شده است این آموزش که در آموزش قابلیت حضور درون‌العمل را به همراه دارد و با استفاده از این سیستم سختی زیمین می‌تواند باعث فشار و خونه شود که در حالی ساختمان گرفته دارد. به این ترتیب می‌تواند در مورد بررسی سیستم ساختی ارائه شود. استفاده از یک گمانه نمی‌شود برای ساختمان ساختی در طول زمان ساختمان را تأمین کرده.

نحوه تهیه شده است این آموزش که در آموزش قابلیت حضور درون‌العمل را به همراه دارد و با استفاده از این سیستم سختی زیمین می‌تواند باعث فشار و خونه شود که در حالی ساختمان گرفته دارد. به این ترتیب می‌تواند در مورد بررسی سیستم ساختی ارائه شود. استفاده از یک گمانه نمی‌شود برای ساختمان ساختی در طول زمان ساختمان را تأمین کرده.

نحوه تهیه شده است این آموزش که در آموزش قابلیت حضور درون‌العمل را به همراه دارد و با استفاده از این سیستم سختی زیمین می‌تواند باعث فشار و خونه شود که در حالی ساختمان گرفته دارد. به این ترتیب می‌تواند در مورد بررسی سیستم ساختی ارائه شود. استفاده از یک گمانه نمی‌شود برای ساختمان ساختی در طول زمان ساختمان را تأمین کرده.

نحوه تهیه شده است این آموزش که در آموزش قابلیت حضور درون‌العمل را به همراه دارد و با استفاده از این سیستم سختی زیمین می‌تواند باعث فشار و خونه شود که در حالی ساختمان گرفته دارد. به این ترتیب می‌تواند در مورد بررسی سیستم ساختی ارائه شود. استفاده از یک گمانه نمی‌شود برای ساختمان ساختی در طول زمان ساختمان را تأمین کرده.

نحوه تهیه شده است این آموزش که در آموزش قابلیت حضور درون‌العمل را به همراه دارد و با استفاده از این سیستم سختی زیمین می‌تواند باعث فشار و خونه شود که در حالی ساختمان گرفته دارد. به این ترتیب می‌تواند در مورد بررسی سیستم ساختی ارائه شود. استفاده از یک گمانه نمی‌شود برای ساختمان ساختی در طول زمان ساختمان را تأمین کرده.
کرده است برای محاسبه توانی \(G_1(t) \) از مدل منبع استوایی تابعی (ICL) استفاده شد. اگر \(G_0(t) \) سرعت مدل منبع استوایی تابعی (ICL) باشد، آنگاه

\[
G_0(t) = \frac{1}{\pi} \int_0^\infty e^{-\frac{r^2}{2\beta}} \frac{r}{r_s^2} \left[1 - \frac{1}{\beta} Y_1(\beta) \right] \frac{dr}{r}
\]

در رابطه (8) \(\beta \) فاکتور ضریب نفوذ حیرتی و انتقال سیال است. \(Y_1(\beta) \) و \(Y_0(\beta) \) از جمله مقادیر خاصی هستند که با توجه به این که از معادلات حرارتی در داخل سیال و حاصل می‌شود. بنابراین

\[
G_0, ICL(t) = \frac{1}{\pi} \int_0^\infty e^{-\frac{r^2}{2\beta}} \frac{r}{r_s^2} \left[1 - \frac{1}{\beta} Y_1(\beta) \right] \frac{dr}{r} - \frac{1}{\pi} \int_0^\infty e^{-\frac{r^2}{2\beta}} \frac{r}{r_s^2} \left[\frac{1}{\beta} Y_1(\beta) \right] \frac{dr}{r}
\]

در رابطه (8) \(\beta \) فاکتور ضریب نفوذ حیرتی و انتقال سیال است. \(Y_1(\beta) \) و \(Y_0(\beta) \) از جمله مقادیر خاصی هستند که با توجه به این که از معادلات حرارتی در داخل سیال و حاصل می‌شود. بنابراین

\[
G_0, ICL(t) = \frac{1}{\pi} \int_0^\infty e^{-\frac{r^2}{2\beta}} \frac{r}{r_s^2} \left[1 - \frac{1}{\beta} Y_1(\beta) \right] \frac{dr}{r} - \frac{1}{\pi} \int_0^\infty e^{-\frac{r^2}{2\beta}} \frac{r}{r_s^2} \left[\frac{1}{\beta} Y_1(\beta) \right] \frac{dr}{r}
\]

در رابطه (8) \(\beta \) فاکتور ضریب نفوذ حیرتی و انتقال سیال است. \(Y_1(\beta) \) و \(Y_0(\beta) \) از جمله مقادیر خاصی هستند که با توجه به این که از معادلات حرارتی در داخل سیال و حاصل می‌شود. بنابراین

\[
G_0, ICL(t) = \frac{1}{\pi} \int_0^\infty e^{-\frac{r^2}{2\beta}} \frac{r}{r_s^2} \left[1 - \frac{1}{\beta} Y_1(\beta) \right] \frac{dr}{r} - \frac{1}{\pi} \int_0^\infty e^{-\frac{r^2}{2\beta}} \frac{r}{r_s^2} \left[\frac{1}{\beta} Y_1(\beta) \right] \frac{dr}{r}
\]

در رابطه (8) \(\beta \) فاکتور ضریب نفوذ حیرتی و انتقال سیال است. \(Y_1(\beta) \) و \(Y_0(\beta) \) از جمله مقادیر خاصی هستند که با توجه به این که از معادلات حرارتی در داخل سیال و حاصل می‌شود. بنابراین

\[
G_0, ICL(t) = \frac{1}{\pi} \int_0^\infty e^{-\frac{r^2}{2\beta}} \frac{r}{r_s^2} \left[1 - \frac{1}{\beta} Y_1(\beta) \right] \frac{dr}{r} - \frac{1}{\pi} \int_0^\infty e^{-\frac{r^2}{2\beta}} \frac{r}{r_s^2} \left[\frac{1}{\beta} Y_1(\beta) \right] \frac{dr}{r}
\]

در رابطه (8) \(\beta \) فاکتور ضریب نفوذ حیرتی و انتقال سیال است. \(Y_1(\beta) \) و \(Y_0(\beta) \) از جمله مقادیر خاصی هستند که با توجه به این که از معادلات حرارتی در داخل سیال و حاصل می‌شود. بنابراین

\[
G_0, ICL(t) = \frac{1}{\pi} \int_0^\infty e^{-\frac{r^2}{2\beta}} \frac{r}{r_s^2} \left[1 - \frac{1}{\beta} Y_1(\beta) \right] \frac{dr}{r} - \frac{1}{\pi} \int_0^\infty e^{-\frac{r^2}{2\beta}} \frac{r}{r_s^2} \left[\frac{1}{\beta} Y_1(\beta) \right] \frac{dr}{r}
\]

در رابطه (8) \(\beta \) فاکتور ضریب نفوذ حیرتی و انتقال سیال است. \(Y_1(\beta) \) و \(Y_0(\beta) \) از جمله مقادیر خاصی هستند که با توجه به این که از معادلات حرارتی در داخل سیال و حاصل می‌شود. بنابراین

\[
G_0, ICL(t) = \frac{1}{\pi} \int_0^\infty e^{-\frac{r^2}{2\beta}} \frac{r}{r_s^2} \left[1 - \frac{1}{\beta} Y_1(\beta) \right] \frac{dr}{r} - \frac{1}{\pi} \int_0^\infty e^{-\frac{r^2}{2\beta}} \frac{r}{r_s^2} \left[\frac{1}{\beta} Y_1(\beta) \right] \frac{dr}{r}
\]
ساعتی و ماهه‌ای ساختمان نمونه است. برای یک منظور نازار به مدل‌سازی

ساختار نمونه در نظر گرفته شده است. این نگاه برای اثبات...
بررسی استفاده مستقیم از گرماهای برای سرمایش در انقبال آب و هوایی از تبرای برای ساختمان ان کاربردی سیستم و ادارات

شکل 4 نموداری از مرحله‌های محاسبه در محاسبه در مثلث. در هر حالت، برای محاسبه در مثلث (18) برای محاسبه در مثلث، استفاده می‌شود. در این استفاده می‌شود، زیرین نداده.

شکل 5 نموداری از محاسبه در مثلث برای محاسبه در مثلث (16) برای محاسبه در مثلث (17) برای محاسبه در مثلث در طرح اکلیمی می‌شود.

شکل 6 نموداری از محاسبه در مثلث برای محاسبه در مثلث (14) برای محاسبه در مثلث (13) برای محاسبه در مثلث در طرح اکلیمی می‌شود.

شکل 7 نموداری از محاسبه در مثلث برای محاسبه در مثلث (12) برای محاسبه در مثلث (11) برای محاسبه در طرح اکلیمی می‌شود.

شکل 8 نموداری از محاسبه در مثلث برای محاسبه در مثلث (10) برای محاسبه در مثلث (9) برای محاسبه در طرح اکلیمی می‌شود.

شکل 9 نموداری از محاسبه در مثلث برای محاسبه در مثلث (8) برای محاسبه در مثلث (7) برای محاسبه در طرح اکلیمی می‌شود.

شکل 10 نموداری از محاسبه در مثلث برای محاسبه در مثلث (6) برای محاسبه در مثلث (5) برای محاسبه در طرح اکلیمی می‌شود.

شکل 11 نموداری از محاسبه در مثلث برای محاسبه در مثلث (4) برای محاسبه در مثلث (3) برای محاسبه در طرح اکلیمی می‌شود.

شکل 12 نموداری از محاسبه در مثلث برای محاسبه در مثلث (2) برای محاسبه در مثلث (1) برای محاسبه در طرح اکلیمی می‌شود.

شکل 13 نموداری از محاسبه در مثلث برای محاسبه در مثلث (18) برای محاسبه در مثلث، استفاده می‌شود. در این استفاده می‌شود، زیرین نداده.

شکل 14 نموداری از محاسبه در مثلث برای محاسبه در مثلث (17) برای محاسبه در مثلث (16) برای محاسبه در مثلث در طرح اکلیمی می‌شود.

شکل 15 نموداری از محاسبه در مثلث برای محاسبه در مثلث (15) برای محاسبه در مثلث (14) برای محاسبه در طرح اکلیمی می‌شود.

شکل 16 نموداری از محاسبه در مثلث برای محاسبه در مثلث (13) برای محاسبه در مثلث (12) برای محاسبه در طرح اکلیمی می‌شود.

شکل 17 نموداری از محاسبه در مثلث برای محاسبه در مثلث (11) برای محاسبه در مثلث (10) برای محاسبه در طرح اکلیمی می‌شود.

شکل 18 نموداری از محاسبه در مثلث برای محاسبه در مثلث (9) برای محاسبه در مثلث (8) برای محاسبه در طرح اکلیمی می‌شود.

شکل 19 نموداری از محاسبه در مثلث برای محاسبه در مثلث (7) برای محاسبه در مثلث (6) برای محاسبه در طرح اکلیمی می‌شود.

شکل 20 نموداری از محاسبه در مثلث برای محاسبه در مثلث (5) برای محاسبه در مثلث (4) برای محاسبه در طرح اکلیمی می‌شود.

شکل 21 نموداری از محاسبه در مثلث برای محاسبه در مثلث (3) برای محاسبه در مثلث (2) برای محاسبه در طرح اکلیمی می‌شود.

شکل 22 نموداری از محاسبه در مثلث برای محاسبه در مثلث (1) برای محاسبه در طرح اکلیمی می‌شود.
جدول ۱
چهار حالت مصالح ساختمان و جدایی پنجره

<table>
<thead>
<tr>
<th>جدایی</th>
<th>مصالح ساختمان</th>
<th>جداره</th>
<th>پنجره</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>ساختمان دوندی و پنجره</td>
<td>۰.۵۵</td>
<td>۳۵</td>
</tr>
<tr>
<td>۲</td>
<td>۰.۵۰</td>
<td>۱۰۰</td>
<td>۲.۵</td>
</tr>
<tr>
<td>۳</td>
<td>۰.۴۰</td>
<td>۱۵۰</td>
<td>۱.۵</td>
</tr>
<tr>
<td>۴</td>
<td>۰.۳۰</td>
<td>۲۰۰</td>
<td>۰.۵</td>
</tr>
</tbody>
</table>

عقیق طراحی گمانه

برای بررسی گمانه فرض شده است که مدل حرارتی گمانه در حالت گرافیک کولی با بی‌پنجره و حالت سرامیکی بسته استفاده شده است. برای آزمون مصالح محاسبه مقدار نرم‌نمای نیز به روش [۱۵] استفاده شد. در این حالت محاسبه از روش حرارتی محسوس، در حالت سرامیکی بسته می‌باشد.

جدول ۲
杭zx مصالح ساختمان

<table>
<thead>
<tr>
<th>مواد</th>
<th>بی‌پنجره</th>
<th>پنجره</th>
</tr>
</thead>
<tbody>
<tr>
<td>فشار ۱</td>
<td>۲۰</td>
<td>۱.۴</td>
</tr>
<tr>
<td>فشار ۲</td>
<td>۱.۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>فشار ۳</td>
<td>۲</td>
<td>۲.۹</td>
</tr>
<tr>
<td>فشار ۴</td>
<td>۰.۷</td>
<td>۹۲۰</td>
</tr>
<tr>
<td>فشار ۵</td>
<td>۲.۵</td>
<td>۰.۰۳۷</td>
</tr>
</tbody>
</table>
Table 3 Thermal properties of borehole materials

<table>
<thead>
<tr>
<th>Material</th>
<th>λ (W/mK)</th>
<th>ρ (kg/m³)</th>
<th>C (J/kgK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDPE</td>
<td>1.08</td>
<td>752</td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td>0.42</td>
<td>1680</td>
<td>1100</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>1900</td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>4200</td>
<td>998</td>
</tr>
</tbody>
</table>

Table 4 Geometric parameters of the borehole

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value 1 (cm)</th>
<th>Value 2 (cm)</th>
<th>Value 3 (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shallow</td>
<td>6.5</td>
<td>1.37</td>
<td>1.67</td>
</tr>
<tr>
<td>Depth</td>
<td>8.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 6 Hourly building loads for the building without insulation with single glazings window for 123 days of cooling period

1. Single glazing window for 123 days of cooling period
2. Without single glazing window

Table 3 shows thermal properties of borehole materials for different materials. Table 4 lists the geometric parameters of the borehole, including the shallow and depth values.

Fig. 6 depicts the hourly building loads for a building without insulation with single glazing windows over a 123-day cooling period. The results are compared with and without a single glazing window.
آبرکدنی و توجهات

در این مطالعه، مشخصات مداوم مصرفی کاربری سرمایشی ساختمان با کاربری مسکونی و اداری در شهر تبریز بررسی و مقدار حرارتی این سیستم برای یک ساختمان مبتنی بر چهار نوع مختلف بررسی شده است.

این مقایسه اینکه میزان آب در اینن زمان‌های مصرفی و اگر مغلوب حرارتی این سیستم برای یک ساختمان مبتنی بر چهار نوع مختلف بررسی شده است.

جدول 6 مقدار معقّد طراحی و عملکرد سیستم سرمایشی مستقیم برای کاربری اداری در پهلوهال

<table>
<thead>
<tr>
<th>ساختمان</th>
<th>عمق طراحی (m)</th>
<th>معقّد طراحی (m)</th>
<th>معقّد طراحی (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>آبیاری</td>
<td>9</td>
<td>869</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>795</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>658</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>593</td>
<td>64</td>
</tr>
</tbody>
</table>

جدول 7 تغییرات داده‌های برای استخوان بدون برق و نیروگاه‌های کهکشانی (حاله 1) از 1 تیر 31 تا 123 روز

<table>
<thead>
<tr>
<th>طراحی</th>
<th>مقدار طراحی</th>
<th>عملکرد</th>
<th>مقدار طراحی</th>
<th>عملکرد</th>
<th>مقدار طراحی</th>
<th>عملکرد</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>125</td>
<td>869</td>
<td>115</td>
<td>795</td>
<td>658</td>
<td>593</td>
</tr>
<tr>
<td>2</td>
<td>118</td>
<td>1247</td>
<td>118</td>
<td>1247</td>
<td>118</td>
<td>1247</td>
</tr>
<tr>
<td>3</td>
<td>114</td>
<td>1163</td>
<td>114</td>
<td>1163</td>
<td>114</td>
<td>1163</td>
</tr>
<tr>
<td>4</td>
<td>116</td>
<td>1165</td>
<td>116</td>
<td>1165</td>
<td>116</td>
<td>1165</td>
</tr>
</tbody>
</table>
در صورت استفاده از سیستم سرمایش مستقیم زمین برای هر چهار حالت در ساختمان‌ها کاربردی اداری، تعادل سیستم‌های آبیاری کمتر از ۵۰% انتقال حرارت به وسیله آب و هوا یک اکتشاف از این سیستم در ساختمان‌های اداری برای شهر تبریز قابل پذیرش است.

5- فهرست علوم

<table>
<thead>
<tr>
<th>اسم علوم</th>
<th>توضیحات</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>طول مقطع</td>
</tr>
<tr>
<td>B</td>
<td>ضریب حرارتی</td>
</tr>
<tr>
<td>C</td>
<td>COP</td>
</tr>
<tr>
<td>D</td>
<td>کمیت بارک‌درباری (J/kg·K⁻¹)</td>
</tr>
<tr>
<td>E</td>
<td>نتیج پایانی سرمایه</td>
</tr>
<tr>
<td>F</td>
<td>ضریب پذیرایی حرارتی (K/m²·K)</td>
</tr>
<tr>
<td>G</td>
<td>ضریب حرارتی حرارتی (W/m·K)</td>
</tr>
<tr>
<td>H</td>
<td>ضریب حرارتی حرارتی (W/m²·K⁻¹)</td>
</tr>
<tr>
<td>I</td>
<td>ضریب حرارتی حرارتی (W/m³·K⁻¹)</td>
</tr>
<tr>
<td>J</td>
<td>ضریب حرارتی حرارتی (W/m³·K⁻¹)</td>
</tr>
<tr>
<td>K</td>
<td>ضریب حرارتی حرارتی (W/m³·K⁻¹)</td>
</tr>
<tr>
<td>L</td>
<td>ضریب حرارتی حرارتی (W/m³·K⁻¹)</td>
</tr>
<tr>
<td>M</td>
<td>ضریب حرارتی حرارتی (W/m³·K⁻¹)</td>
</tr>
<tr>
<td>N</td>
<td>ضریب حرارتی حرارتی (W/m³·K⁻¹)</td>
</tr>
<tr>
<td>O</td>
<td>ضریب حرارتی حرارتی (W/m³·K⁻¹)</td>
</tr>
<tr>
<td>P</td>
<td>ضریب حرارتی حرارتی (W/m³·K⁻¹)</td>
</tr>
<tr>
<td>Q</td>
<td>ضریب حرارتی حرارتی (W/m³·K⁻¹)</td>
</tr>
<tr>
<td>R</td>
<td>ضریب حرارتی حرارتی (W/m³·K⁻¹)</td>
</tr>
<tr>
<td>S</td>
<td>ضریب حرارتی حرارتی (W/m³·K⁻¹)</td>
</tr>
<tr>
<td>T</td>
<td>ضریب حرارتی حرارتی (W/m³·K⁻¹)</td>
</tr>
<tr>
<td>U</td>
<td>ضریب حرارتی حرارتی (W/m³·K⁻¹)</td>
</tr>
<tr>
<td>V</td>
<td>ضریب حرارتی حرارتی (W/m³·K⁻¹)</td>
</tr>
<tr>
<td>W</td>
<td>ضریب حرارتی حرارتی (W/m³·K⁻¹)</td>
</tr>
<tr>
<td>X</td>
<td>ضریب حرارتی حرارتی (W/m³·K⁻¹)</td>
</tr>
<tr>
<td>Y</td>
<td>ضریب حرارتی حرارتی (W/m³·K⁻¹)</td>
</tr>
<tr>
<td>Z</td>
<td>ضریب حرارتی حرارتی (W/m³·K⁻¹)</td>
</tr>
</tbody>
</table>

6- علامت‌برداری

<table>
<thead>
<tr>
<th>علامت</th>
<th>معنی</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>ضریب نفوذ حرارتی (W/m·K⁻¹)</td>
</tr>
<tr>
<td>β</td>
<td>عامل انگشت گیری</td>
</tr>
<tr>
<td>ε</td>
<td>ضریب تامینی در کول</td>
</tr>
<tr>
<td>θ</td>
<td>ضریب تامینی در کول</td>
</tr>
<tr>
<td>ρ</td>
<td>چگالی (kg/m³)</td>
</tr>
</tbody>
</table>

7- زیرنویس‌ها

<table>
<thead>
<tr>
<th>علامت</th>
<th>معنی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱m</td>
<td>یک ماهه</td>
</tr>
<tr>
<td>۶h</td>
<td>شش ساعت</td>
</tr>
<tr>
<td>۱۰y</td>
<td>ده ساله</td>
</tr>
<tr>
<td>a</td>
<td>هوا</td>
</tr>
<tr>
<td>BHE</td>
<td>هوا</td>
</tr>
<tr>
<td>b</td>
<td>conv</td>
</tr>
<tr>
<td>f</td>
<td>FC</td>
</tr>
<tr>
<td>f1</td>
<td>سیال در لوله اول</td>
</tr>
<tr>
<td>f2</td>
<td>سیال در لوله دوم</td>
</tr>
<tr>
<td>fb</td>
<td>سیال در لوله بیشتر</td>
</tr>
<tr>
<td>gb</td>
<td>چاه خیال دور از گمانه</td>
</tr>
</tbody>
</table>

[۱۵] Housing and urban development center, National Building Regulations 19, Iran, Tehran, 2010. (in Persian) (فارسی)