Tool wear estimation in turning by the use of non-stationary time series method

Behrang HosseinI Aghdam1, Mehrdad Vahdati2, Morteza Homayoun Sadeghi3

1- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
2- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
3- Department of Mechanical Engineering, Tabriz University, Tabriz, Iran
* P.O.B. 1999-19395 Tehran, Iran, vahdati@kntu.ac.ir

ARTICLE INFORMATION

- Original Research Paper
- Received 07 February 2015
- Accepted 22 March 2015
- Available Online 04 May 2015

Abstract

In the present paper, vibration signals recorded during a turning process are used for tool wear estimation. During the cutting process, tool acceleration signals are recorded by use of an accelerometer installed on tool holder, for different wear values. Since the measured acceleration signals have time dependent variance and are non-stationary, time series with time dependent coefficients were used for modelling them and extraction of wear sensitive features. The extracted wear sensitive features are residual variance of different signals and are used as distance between the signals associated with worn tools and the baseline model. A correlation was found based on analysis of distance between worn tools’ acceleration signals in different cutting directions and the baseline signal. Using this correlation, a criterion was obtained for detection of critical wear stage. Such that the distance curves for feed and main cutting directions possess a minimum in the vicinity of critical wear level. Investigation of results revealed that the curves obtained through this method are more accurate than those obtained from stationary modelling method. The results obtained here can be used in online real-time algorithms of tool wear estimation.

Keywords: Tool wear, Turning, Time series, Vibration

چکیده

در این مقاله، سیگنال‌های ارتعاش ابزار به دست آمده از یک ابزار برده متفاوت توسط گرفته شده، در مقایسه با سیگنال‌های ابزار生育 مبتنی بر زمان و غیر استاندارد، برای مدیریت آن‌ها از این منظره به دست آمده‌ای که توسط میزان این ابزار انتخاب و استفاده در این مقاله به الگوهای الزام‌آور قابلیت رفتار و نتایج استانداردی از سیگنال‌های ابزار اصلی و بررسی تغییرات آن‌ها، در این مقاله به همراه جزئیات تشکیل سیگنال‌های ورودی و عوامل و مشخصات سیستم مورد بررسی قرار گرفته. نتایج این مقاله نشان می‌دهد که میزان ابزار برده نسبت به ابزارهای استاندارد، میزان ابزارهای استاندارد و ابزارهای استاندارد، ابزارهای استاندارد و ابزارе
5- Singular Spectrum Analysis (SSA)
برندهای حسینی‌نژاد

یکی از افرادی که می‌تواند به عنوان متخصصی در زمینهٔ اقتصاد و ماشین‌آلات بیان شود، کارکرد فعالیت‌های سال‌های آینده را بررسی کرده و نتایجی که در این زمینه به‌روزرسانی می‌کند، به‌طور کلی به دو بخش تقسیم می‌شود:

1. بخش اول: در این بخش، بررسی‌ها مربوط به توسعه بانک‌ها به‌منظور بهبود خدمات و کیفیت خدمات مالی انجام می‌شود.

2. بخش دوم: در این بخش، بررسی‌های مربوط به توسعه پژوهشگری و سیستم‌های الکترونیکی انجام می‌شود.

در این مقاله، بررسی‌ها به‌منظور بهبود سیستم‌های خاص انجام می‌شود و این به‌منظور بهبود سیستم‌های خاص انجام می‌شود. در این مقاله، بررسی‌ها به‌منظور بهبود سیستم‌های خاص انجام می‌شود و این به‌منظور بهبود سیستم‌های خاص انجام می‌شود. در این مقاله، بررسی‌ها به‌منظور بهبود سیستم‌های خاص انجام می‌شود و این به‌منظور بهبود سیستم‌های خاص انجام می‌شود.
Two Stage Least Squares (2SLS) method

\[
\sigma^2_w | t = E[e^2 | t, \theta] = 1, \ldots, N, \theta \in \Theta_{\text{dim}}(\theta)
\]

In this, we define \(\theta \) as the true parameter, \(\lim_{n \to \infty} E[e^2 | \theta] = 0 \) under the null hypothesis.

\[x_t + \sum_{i=1}^{n} a_i x_{t-i} = w_t + \sum_{i=1}^{m} c_i | w_{t-i} = 1, \ldots, N \]

\[w_t - \sum_{i=1}^{m} c_i \bar{w}_{t-i} = \{ 1 \} , \ldots, N \]

2-2

In this, we define \(\theta \) as the true parameter, \(\lim_{n \to \infty} E[e^2 | \theta] = 0 \) under the null hypothesis.

\[\theta = \arg\min_{\theta} \sum_{t=1}^{N} e_{t}^2 (\theta) \]

In this, we define \(\theta \) as the true parameter, \(\lim_{n \to \infty} E[e^2 | \theta] = 0 \) under the null hypothesis.

\[\omega_{n} | t = \frac{[\ln \lambda_{t}]}{T_{t}} = 1, \ldots, N \]

\[\zeta_{t} = -\cos[\arg(\ln \lambda_{t})] , \quad t = 1, \ldots, N \]

3-2

In this, we define \(\theta \) as the true parameter, \(\lim_{n \to \infty} E[e^2 | \theta] = 0 \) under the null hypothesis.

\[Q = f(e | X_{u}^{1}) \]

3-3

In this, we define \(\theta \) as the true parameter, \(\lim_{n \to \infty} E[e^2 | \theta] = 0 \) under the null hypothesis.

\[M = \{ M(\theta) \} = \{ x_{t} \} + \sum_{i=1}^{n} a_{i} x_{t-i} = e_{t} + \sum_{i=1}^{m} c_{i} | e_{t-i} \}

1 - Moving Average (MA)
<table>
<thead>
<tr>
<th>شاخص</th>
<th>مقدار</th>
<th>وامد</th>
<th>توضیحات</th>
</tr>
</thead>
<tbody>
<tr>
<td>شرایط مانیژن کاری</td>
<td>1</td>
<td>0.9</td>
<td>در محدوده مجهز، افزایش داده‌های قابل توجهی برای داده‌های محدود، مناسب است.</td>
</tr>
<tr>
<td>شاریار محاسباتی</td>
<td>1</td>
<td>0.9</td>
<td>در محدوده مجهز، افزایش داده‌های قابل توجهی برای داده‌های محدود، مناسب است.</td>
</tr>
<tr>
<td>میزان سختی شکل 1</td>
<td>1</td>
<td>0.9</td>
<td>در محدوده مجهز، افزایش داده‌های قابل توجهی برای داده‌های محدود، مناسب است.</td>
</tr>
</tbody>
</table>

3- آزمایش‌ها و ارزش‌های سایز

1- Chi-Square distribution
2- Current system
به دست آید فاصله بین سیگنال‌های مختلف، از مقایسه‌ی پایه‌داشته شده در نظر گرفته شده است. از واریانس بای‌پای‌داشتی می‌توان به عنوان میانگین برای تعیین آن‌اداره سایر استفاده کرد. بنابراین، واریانس بای‌پای‌داشتی سیگنال‌های مختلف محاسبه و بر حسب مقدار سایش ایزی رسم می‌شود.

جدول 2 فرکانس‌های طبیعی ایزای گیری شده

<table>
<thead>
<tr>
<th>فرکانس طبیعی (kHz)</th>
<th>مقدار ایزی</th>
<th>مقدار ایزی دوم</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.02</td>
<td>8/36</td>
<td></td>
</tr>
</tbody>
</table>

شکل 2 تغییرات جمع‌آوری ایزای نگهدارنده

شکل 3 سایش سطح آزاد شبه‌پالس همه به وسیله میکروسکوپ‌های بر اساس مدل اف اس-تاراما

شکل 4 بخشی از سیگنال از طریق متریک‌کاری شده در جهت محور اصلی برخ بر اساس مدل اف اس-تاراما

شکل 5 دنباله بای‌پای‌داشتی برای سیگنال از طریق تخمین زده شده

شکل 6 پارامتر بای‌پای‌داشتی تخمین زده شده

3-2 - تعیین مدل اف اس-تاراما

در این بخش، مدل‌های اف اس-تاراما برای سیگنال‌های شتاب تخمین زده می‌شود. توانایی پایه‌ای از نوین‌ها، توانایی پایه‌ای از نوین‌ها، توانایی پایه‌ای از نوین‌ها، توانایی پایه‌ای از نوین‌ها در مدل‌های اف اس-تاراما برای سیگنال‌های شتاب تخمین زده می‌شود. مسئله‌ای که شکل نمونه‌هایی را می‌خواهد، مسئله‌ای که شکل نمونه‌هایی را می‌خواهد، رسمی مدل‌های تخمین زده شده به صورت ذیل ساخته می‌شود:

\[n = n_2, p = p_2 = 48, p_1 = 50, n_1 = 48 \]

دقت مدل‌هایی در مقایسه با مدل آمیزه‌ای بی‌پای بهتر درصد است این محاسبه توسط نسبت مجموعه‌های پایه‌داشتی به جمع مربعات سری پایش سنجیده می‌شود.

شکل 7 مدل‌های اف اس-تاراما در شکل 4 نشان داده شده است. سری پایه‌داشتی واریانس باستانی به رابطه بای‌پای‌داشتی سیگنال‌های شتاب تخمین زده شده به ترتیب در شکل‌های 5 و 6 نشان داده شده‌اند. همان‌طور که در شکل‌های 6 نشان داده می‌شود، واریانس بای‌پای‌داشتی تغییرات فاصله‌ی تابع‌های نسبت به شتاب در دستگاه 3 برای یکی از مدل‌های اف اس-تاراما تخمین زده شده، فرکانس‌های طبیعی و مقادیر نسبی‌های برای متوسط آرایه شده است. مسئله‌ای که شکل نمونه‌هایی را می‌خواهد، رسمی مدل‌های تخمین زده شده به صورت ذیل ساخته می‌شود.

3-3 - تعیین نسبت با استفاده از واریانس بای‌پای‌داشتی

در این بخش مدل‌های به دست آمده برای سیگنال‌های اندام‌گیری شده در مقایسه دیگر سیگنال‌های ضخیم‌تری به دست آمده برای نسبت با استفاده از واریانس بای‌پای‌داشتی.

1. Walsh basis functions
2. Residual Sum of Squares normalized by Series Sum of Squares (RSS/SSS).
نتایج به دست آمده برای تعدادی از سیگنال‌های خاص از آزمایش‌های تجربی و همچنین نتایج مقalah [13] از ادامه در شکل‌های 7-15 آن‌ها است. با توجه و در این مقاله منحنی‌های دیگری از این مقاله را همانطور که برای نمونه برای سیگنال‌های نارنجی و بالای آن در پارامترهای مختلف از سیگنال‌های متفاوت خشک استفاده کرده‌ایم که با صدای صوتی نسبت به ام‌پی‌سی‌سی کاربردی دارد و در حیطه تحقیق فراموش می‌کند.

![شکل 7]
4- نتایج گیری

در این مقاله، از محل افزایش نیروی بار بر مدل‌های آزمایشگاه‌های شتاب ایرانی که در حین آزمایش‌های برش و حرکتی از مدل‌های مختلف خود از سیگنال‌های صوتی استفاده شده است. دقت محلی از سیگنال‌های این مدل‌ها به صورت نسبت جمع مباداتی شتاب به معنای برای مدل‌های دارند که با توجه به دقت محلی از دست می‌دهد که با مقایسه مقاومت برش و مدل‌های این مقاله را همچنین نتایج مقalah [13] از ادامه در شکل‌های 7-15 آن‌ها است. با توجه و در این مقاله منحنی‌های دیگری از این مقاله را همانطور که برای نمونه برای سیگنال‌های نارنجی و بالای آن در پارامترهای مختلف از سیگنال‌های متفاوت خشک استفاده کرده‌ایم که با صدای صوتی نسبت به ام‌پی‌سی‌سی کاربردی دارد و در حیطه تحقیق فراموش می‌کند.

![شکل 8]

![شکل 9]

1. acceleration stage
2. Dispersion analysis
3. Dispersion ratio
SiGan and SiGANs have many similarities with the standard SiGAN. However, a new structure of the SiGAN is proposed. The SiGAN network is designed to be robust and efficient for the detection of abnormal and critical events. The SiGAN network is compared with the standard SiGAN and the conventional SiGAN in a variety of experiments. The results obtained using the SiGAN indicate that the proposed training method has some advantages over the conventional methods. Therefore, the proposed method can be used for the detection of abnormalities and critical events in industrial applications.

References:

