Experimental investigation and a model presentation for predicting the behavior of metal and aluminum powder compaction under impact loading

Hashem Babaei*, Tohid Mirzababaie Mostofi, Majid Alitavoli, Mojtaba Namdari

Department of Mechanical Engineering, University of Guilan, Rasht, Iran
* P.O.B. 3756-41635 Rasht, Iran, ghbabaei@guilan.ac.ir

ARTICLE INFORMATION
Original Research Paper
Received 04 February 2015
Accepted 01 March 2015
Available Online 12 April 2015

Keywords:
Impact Loading
Powder Compaction
Drop Hammer
Singualar Value Decomposition Method
Dimensional Approach

ABSTRACT
The purpose of this paper is to investigate those products that are produced by powder compaction procedure under the low rate impact loading by a drop hammer, both theoretically and numerically. Experimental section includes checking the efficiency of density, bending strength and elasticity modulus of the product from grain size and different levels of energy. Two kinds of pure aluminum powder in three different sizes and also their combination with ceramic are used to obtain this. In the numerical section, dimension analysis method is applied in which non-dimensional models for density, bending strength, and elasticity modulus are presented in the form of mathematical functions by means of experimental characteristics and data which are categorized to input and output. The purpose of determination of this model is to reach a reliable and satisfactory prediction for final properties of products subjected to impact loading condition. It is worth noting that singular value decomposition approach is used for calculation of linear coefficients vector which has been obtained by non-dimensional parameters. A comparison between these results and experimental data is done by mathematical functions in order to validate the results. The investigation of training and prediction data errors which has been based on root of mean of squares of error and coefficient of determination shows that the obtained results through mathematical functions have acceptable accuracy; hence utilization of the presented mathematical models for predicting the final properties of product subjected to impact loading is desirable.

Please cite this article using:
1- مقدمه

یکی از مهم‌ترین عوامل توجه به روش شکل‌دهی‌های فزایی، کم‌هشیمه‌ی بودن آن است. هم‌چنین میزان انرژی مصرفی خودکارگون و روش کار امکان توسعه ایجاد پیشگیری از دگر عوامل می‌شود. گرفتاری این روش از دیدگاه شناسایی هستند. این در جوامع امکان کنترل برخی از عوامل به‌خاطر صفحاتی نیست که کاربرد

می‌دهد [1].

2- اکتشافات

در این بخش از تحقیق، به شکل‌دهی‌های فزایی و توسعه ایجاد پیشگیری از دگر عوامل می‌شود. گرفتاری این روش از دیدگاه شناسایی هستند. این در جوامع امکان کنترل برخی از عوامل به‌خاطر

می‌دهد [1].

3- نتایج

در این بخش از تحقیق، به شکل‌دهی‌های فزایی و توسعه ایجاد پیشگیری از دگر عوامل می‌شود. گرفتاری این روش از دیدگاه شناسایی هستند. این در جوامع امکان کنترل برخی از عوامل به‌خاطر

می‌دهد [1].

4- بحث نهایی

در این بخش از تحقیق، به شکل‌دهی‌های فزایی و توسعه ایجاد پیشگیری از دگر عوامل می‌شود. گرفتاری این روش از دیدگاه شناسایی هستند. این در جوامع امکان کنترل برخی از عوامل به‌خاطر

می‌دهد [1].
و تحت بارگذاری سطحی توسط سامانه چکش پرتابی قرار گرفته است در این سامانه با بالا بردن ارتفاع چکش و افزایش جرم آن، قطعات تحت سطوح ارتری مختلف تولید شده است. برای خارج کردن نمونه‌های تولید شده از سیلندر، از جک هیدرولیک استفاده شده است که با وارد کردن نیروی یک‌واخت باعث سلاماندن قطعه و همچنین بکوایشان نهایی نمی‌شود همچنین برای سهولت در خارج کردن قطعه از سیلندر از روان کننده‌ای برای کاهش استفاده با جدار سیلندر و قطعه تولید شده استفاده شده است.

2-3: نتایج آزمایش‌ها

در این قسمت، نتایج به‌دست‌آمده از آزمایش‌های انجام‌گرفته، باگر میزان چگالی، مدل استرس‌پذیری و مقاومت خمی قطعه تولید شده تحت بارگذاری شرایط توسط سامانه چکش پرتابی است که در این تغییرات نوع پودر، اندازه دانه و همچنین تغییرات شرایط بارگذاری با توجه به تغییرات ارتفاع چکش پرتاب شده در نظر گرفته شده است. نتایج ارتفاع چکش پرتاب شده موجب افزایش انزیم‌های بکر قطعه و به دنبال آن تراکم بیشتر قطعه تولید شده می‌باشد. افزایش ارتفاع قطعه در این فرآیند با صرف‌نظر از اصطکاک‌های زاپاس (1) به دست می‌آید (9):

\[U = Mgh \]

که در آن \(M \) جرم چکش و \(h \) ارتفاع قطعه نسبت به پیستون قبل از سقوط ارائه است.

[شکل 3: بودر سرامیک قبل از تراکم]

[شکل 4: نمونه‌هایی از قطعات تولید شده از بودر آلومینیوم با فراورده تراکم بودر]

[شکل 5: قطعات تراکمی مزاج شده از بودر آلومینیوم با میکروسکوب الکترونی]

[شکل 1: مسئله چکش پرتابی (9)]

[شکل 2: بودر آلومینیوم خالص قبل از تراکم]
جدول 4: نتایج آزمایش‌های انجم شده بر روی پودر ترکیبی آلومینیوم سرامیک

<table>
<thead>
<tr>
<th>پودر ترکیبی (%)</th>
<th>انجم (cm)</th>
<th>ارتفاع قطعه (J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>79.98</td>
<td>2146</td>
<td>8/24</td>
</tr>
<tr>
<td>79.93</td>
<td>2158</td>
<td>8/21</td>
</tr>
<tr>
<td>79.81</td>
<td>2155</td>
<td>8/21</td>
</tr>
<tr>
<td>79.93</td>
<td>2158</td>
<td>8/21</td>
</tr>
<tr>
<td>79.76</td>
<td>2157</td>
<td>8/22</td>
</tr>
<tr>
<td>81.33</td>
<td>2193</td>
<td>8/20</td>
</tr>
<tr>
<td>79.71</td>
<td>2138</td>
<td>8/23</td>
</tr>
</tbody>
</table>

شکل 7: نتایج آزمایش‌های انجم شده بر روی پودر ترکیبی آلومینیوم سرامیک

شکل 6: نتایج آزمایش‌های انجم شده بر روی پودر (A) (B) و (C)

جدول 1: نتایج آزمایش‌های انجم شده بر روی پودر (A)

<table>
<thead>
<tr>
<th>پودر (kg/m²)</th>
<th>انجم (cm)</th>
<th>ارتفاع قطعه (J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6398</td>
<td>1725</td>
<td>1025</td>
</tr>
<tr>
<td>6971</td>
<td>1855</td>
<td>953</td>
</tr>
<tr>
<td>7359</td>
<td>1987</td>
<td>890</td>
</tr>
<tr>
<td>7593</td>
<td>2050</td>
<td>863</td>
</tr>
<tr>
<td>8174</td>
<td>2207</td>
<td>801</td>
</tr>
<tr>
<td>8359</td>
<td>2257</td>
<td>764</td>
</tr>
<tr>
<td>8741</td>
<td>2360</td>
<td>749</td>
</tr>
</tbody>
</table>

جدول 2: نتایج آزمایش‌های انجم شده بر روی پودر (B)

<table>
<thead>
<tr>
<th>پودر (kg/m²)</th>
<th>انجم (cm)</th>
<th>ارتفاع قطعه (J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6933</td>
<td>1726</td>
<td>1025</td>
</tr>
<tr>
<td>6930</td>
<td>1871</td>
<td>945</td>
</tr>
<tr>
<td>7430</td>
<td>2006</td>
<td>862</td>
</tr>
<tr>
<td>7785</td>
<td>2102</td>
<td>841</td>
</tr>
<tr>
<td>8689</td>
<td>2184</td>
<td>810</td>
</tr>
<tr>
<td>8301</td>
<td>2252</td>
<td>785</td>
</tr>
<tr>
<td>8641</td>
<td>2333</td>
<td>758</td>
</tr>
<tr>
<td>9152</td>
<td>2471</td>
<td>716</td>
</tr>
</tbody>
</table>

جدول 3: نتایج آزمایش‌های انجم شده بر روی پودر (C)

<table>
<thead>
<tr>
<th>پودر (kg/m²)</th>
<th>انجم (cm)</th>
<th>ارتفاع قطعه (J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6415</td>
<td>1712</td>
<td>1021</td>
</tr>
<tr>
<td>6937</td>
<td>1873</td>
<td>944</td>
</tr>
<tr>
<td>7371</td>
<td>2089</td>
<td>847</td>
</tr>
<tr>
<td>8107</td>
<td>2188</td>
<td>808</td>
</tr>
<tr>
<td>8307</td>
<td>2243</td>
<td>768</td>
</tr>
<tr>
<td>8544</td>
<td>2307</td>
<td>767</td>
</tr>
<tr>
<td>9004</td>
<td>2431</td>
<td>727</td>
</tr>
<tr>
<td>9511</td>
<td>2568</td>
<td>689</td>
</tr>
</tbody>
</table>

شکل 8: نتایج آزمایش‌های انجم شده بر روی پودر (A) (B) و (C)

است. با استفاده از داده‌های خروجی از انجم‌های سری‌ای نیروی سیستم و شیب نمودار نیروی‌های قطعه به دست آمده است. با استفاده از رابطه (2)

$$ P = \frac{L^2}{48(\rho d)^2} $$

مقدار مقادیر خشک برای هر قطعه مشخص شده است که در آن $$ P $$ نیروی
که شامل موارد زیر است:

1- مقایسه اهداف بررسی‌های تجربی و پیشگیری از انجم آزمایش‌های

تکراری

2- بررسی و شناخت اثر یک از متغیرهای وابسته به فرایند و تحلیل و

تجزیه داده‌های آزمایش‌گذاری

3- ارائه مدل بین تعداد دلخواهی از متغیرهای سیستم و پیش‌ساخت رفتار

متغیرها و یا کمیت‌های فیزیکی در هر سیستم با در هر یک از

یا توانید تشکیل گروه‌های یا بعد دهند. هر یک از گروه‌ها

یا توانید به صورت‌های مختلف ظاهر شود، اما تعداد این گروه‌ها منحصر بر

جدول ۵ نتایج بدست‌آمده از آزمون خمش و روابط (۲.۲)

<table>
<thead>
<tr>
<th>نوع شماره</th>
<th>مقاومت خمش (MPa)</th>
<th>پودر نمونه</th>
<th>مدول استنشاب (۲۵۰ MPa)</th>
<th>dp/Δp</th>
<th>X \times 10^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2488</td>
<td>556.47</td>
<td>1.91</td>
<td>473</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3381</td>
<td>756.14</td>
<td>3.48</td>
<td>862</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>6208</td>
<td>1433.06</td>
<td>6.63</td>
<td>1640</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>8477</td>
<td>1895.63</td>
<td>7.35</td>
<td>1820</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>10387</td>
<td>2322.92</td>
<td>9.01</td>
<td>2230</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>11361</td>
<td>2540.75</td>
<td>10.24</td>
<td>2540</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>12928</td>
<td>2891.35</td>
<td>11.96</td>
<td>2960</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>13617</td>
<td>3045.43</td>
<td>14.02</td>
<td>3470</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>2566</td>
<td>573.96</td>
<td>2.04</td>
<td>505</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>4270</td>
<td>955</td>
<td>3.86</td>
<td>955</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>6272</td>
<td>1402.75</td>
<td>6.79</td>
<td>1680</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>8040</td>
<td>1796</td>
<td>7.60</td>
<td>1880</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>11112</td>
<td>2486.96</td>
<td>9.60</td>
<td>2375</td>
<td>5</td>
</tr>
<tr>
<td>14</td>
<td>12121</td>
<td>2708.67</td>
<td>10.59</td>
<td>2620</td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td>11659</td>
<td>260.734</td>
<td>12.16</td>
<td>3010</td>
<td>7</td>
</tr>
<tr>
<td>16</td>
<td>14234</td>
<td>3183.93</td>
<td>14.30</td>
<td>3540</td>
<td>8</td>
</tr>
<tr>
<td>17</td>
<td>2614</td>
<td>5845.63</td>
<td>2.10</td>
<td>520</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>4959</td>
<td>1109.01</td>
<td>2.96</td>
<td>732</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>8471</td>
<td>1894.43</td>
<td>6.75</td>
<td>1617</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>10327</td>
<td>2303.94</td>
<td>7.84</td>
<td>1940</td>
<td>4</td>
</tr>
<tr>
<td>21</td>
<td>12102</td>
<td>2706.52</td>
<td>10.06</td>
<td>2490</td>
<td>5</td>
</tr>
<tr>
<td>22</td>
<td>13354</td>
<td>2986.57</td>
<td>10.91</td>
<td>2700</td>
<td>6</td>
</tr>
<tr>
<td>23</td>
<td>13426</td>
<td>3052.67</td>
<td>12.97</td>
<td>3210</td>
<td>7</td>
</tr>
<tr>
<td>24</td>
<td>15748</td>
<td>3521.94</td>
<td>15.15</td>
<td>3750</td>
<td>8</td>
</tr>
<tr>
<td>25</td>
<td>6655</td>
<td>1533</td>
<td>3.72</td>
<td>920</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>6624</td>
<td>1401</td>
<td>3.60</td>
<td>880</td>
<td>2</td>
</tr>
<tr>
<td>27</td>
<td>7326</td>
<td>1612</td>
<td>3.92</td>
<td>970</td>
<td>3</td>
</tr>
<tr>
<td>28</td>
<td>6716</td>
<td>1502</td>
<td>3.94</td>
<td>900</td>
<td>4</td>
</tr>
<tr>
<td>29</td>
<td>6614</td>
<td>1524</td>
<td>3.76</td>
<td>930</td>
<td>5</td>
</tr>
<tr>
<td>30</td>
<td>7745</td>
<td>1732</td>
<td>4.12</td>
<td>120</td>
<td>6</td>
</tr>
<tr>
<td>31</td>
<td>5867</td>
<td>1312</td>
<td>3.27</td>
<td>810</td>
<td>7</td>
</tr>
</tbody>
</table>

شکل 9 نمودار مدول الاستنشاب بر حسب انرژی انتقال

شکل 10 نمودار حجمی سرامیک (الزور) بر حسب DP/ΔP

شکل 11 نمودار مقاومت خمش بر حسب انرژی انتقال برای پودر ترکیبی

ارائه مدل برای یک شکل‌دهی تراکمی پودر با استفاده از روش SVD

استفاده از روش تحلیل ابعادی در شناسایی هر یک از فیزیکی مربوط به ماده‌ها در

درصد حجمی سرامیک

شکل 8 نمودار مقاومت خمش بر حسب انرژی انتقال

شکل 7 نمودار MCC بر حسب انرژی انتقال

شکل 6 نمودار DP/ΔP بر حسب انرژی انتقال

شکل 5 نمودار DP/ΔP بر حسب انرژی انتقال
بررسی تئوری اول این مدل برای بای بیلی و رفتار ناکامی پودرهای گلی و سربایی شامل بر سر عفونتی

در مدل سه‌متغیره‌ای رفتار ناکامی پودرهای گلی و سربایی شامل بر سر عفونتی

3.1- بررسی تئوری اول این مدل برای بای بیلی و رفتار ناکامی پودرهای گلی و سربایی شامل بر سر عفونتی

dr = f (m, h, A, D, m)

(9)

با دقت نظر این ابعاد شاید در یک چنین مطالعه طراحی قانون همکاران شایسته چهار گروه بی بسته مطالعه را به دست می‌آورد.

\[\pi_0 = \frac{P_{EC}}{P_{AI}} \]

(10)

\[\pi_1 = \frac{D}{M} \]

(11)

\[\pi_2 = \frac{1}{\pi_1} \]

(12)

\[\pi_3 = \frac{1}{\pi_2} \]

(13)

با توجه به داده‌ها برای روابط (14) در نظر گرفته:

\[\pi_0 = \frac{P_{EC}}{P_{AI}} = f(\pi_1, \pi_2, \pi_3) \]

(14)

برای استخراج مقادیر نابع f به شکل رابطه (15) در نظر گرفته می‌شود:

\[\pi_0 = \pi_1 \cdot \pi_2 \cdot \pi_3 \]

(15)

با توجه به فرمول‌های آن سیستمی با معلوم شدن دسته‌بندی گرده پیدا می‌شود با استفاده از روش یکنواخت ابعاد می‌توان به‌دست آورد که گرده‌پذیری این سیستمی است که

\[\ln(\pi_0) = \eta + \alpha \ln(\pi_1) + \beta \ln(\pi_2) + \gamma \ln(\pi_3) \]

(16)

\[\eta = \ln(\xi) \]

(17)

در نتیجه ایست اکنون می‌توان به‌دست آورد که در یک مدل لذت‌های جمعی داده‌های M (ایستا 20) باعث می‌شود که بتوانند به شکل ماتریسی (مطالعه 21) نمایش داد:

\[A = XY \]

(21)

که در آن K و ξ می‌توان به شکل (مطالعه 18) یا را در N مانند:

\[\zeta_{ij} = \ln(\pi_{ij}), \quad i = 1, 2, 3, ... , M, \quad j = 1, 2, 3 \]

(19)

\[\zeta_0 = \ln(\pi_0), \quad i = 1, 2, 3 \]

(20)

نتایج داده‌ها (18) را به صورت نابع برای میانی‌های این مقدار احتمالات استفاده از این می‌توان در مدل (6) به چنین بیشینی کرد:

\[X_i = (x_{11}, x_{12}, x_{13}, ... , x_{im}), \quad i = 1, 2, 3, ... , M \]

(5)

\[\hat{y}_i = f(x_{i1}, x_{i2}, x_{i3}, ... , x_{im}), \quad i = 1, 2, 3, ... , M \]

(6)

شاخص‌های مقادیر ماتریسی نابع برای میانی‌های احتمالات برای محاسبه نابع برای داده‌های مدل (7) ارزش‌های مدل است.

\[\sum_{i=1}^{m} \left[f(x_{i1}, x_{i2}, x_{i3}, ... , x_{im}) - \hat{y}_i \right]^2 \rightarrow \text{Min} \]

(7)

در مدل‌های با این استفاده از روست تحلیل ابعاد، یک‌متغیره‌ای بر این استفاده از معنی‌داری افقی و قطعی سبب می‌شود:

\[f(x_{i1}, x_{i2}, x_{i3}, ... , x_{im}), \quad i = 1, 2, 3, ... , M \]

(8)

\[A_{ij} \rightarrow \text{Min} \]

(24)

\[Y = [\xi_{10} \xi_{20} ... \xi_{M0}]^T \]

(23)

\[X = [\eta_{10} \eta_{20} ... \eta_{M0}]^T \]

(22)

\[A = [\begin{array}{ccc} \xi_{11} & \xi_{12} & \xi_{13} \\ \xi_{21} & \xi_{22} & \xi_{23} \\ \vdots & \vdots & \vdots \\ \xi_{M1} & \xi_{M2} & \xi_{M3} \end{array}] \]

(21)

\[\hat{y}_{i0} = f(\pi_{10}, \pi_{20}, \pi_{30}), \quad i = 1, 2, 3, ... , M \]

(8)

\[A = W V W^T \]

(25)

\[\text{درجه حرارت سرمایه‌ها} \]

(3)

3.1- بررسی تئوری اول این مدل برای بای بیلی و رفتار ناکامی پودرهای گلی و سربایی شامل بر سر عفونتی

به چنین نابع برای میانی‌های احتمالات استفاده از داده‌های بی‌ربوستی و نابع برای میانی‌های احتمالات برای داده‌های مدل (7) ارزش‌های مدل است.

\[A_{ij} \rightarrow \text{Min} \]

(24)

\[Y = [\xi_{10} \xi_{20} ... \xi_{M0}]^T \]

(23)

\[X = [\eta_{10} \eta_{20} ... \eta_{M0}]^T \]

(22)

\[A = [\begin{array}{ccc} \xi_{11} & \xi_{12} & \xi_{13} \\ \xi_{21} & \xi_{22} & \xi_{23} \\ \vdots & \vdots & \vdots \\ \xi_{M1} & \xi_{M2} & \xi_{M3} \end{array}] \]

(21)

\[\hat{y}_{i0} = f(\pi_{10}, \pi_{20}, \pi_{30}), \quad i = 1, 2, 3, ... , M \]

(8)
در شکل 31-14 نمایش داده شده است که در اثر تنش بالا مقدار سطح خازن در سطح خازن بالا می‌باشد. این مقدار در شرایط مختلف، برای تغییرات مختلف، سطح خازن بالا می‌باشد.

\[
\begin{align*}
\pi_2 &= \frac{h}{H} \\
\pi_3 &= \frac{h}{H}
\end{align*}
\]

از لحاظ بذر کاهش ابعاد انجماد شده در بخش قیلی پایه‌ای در مقدار \(\pi_1 \) برای پایه‌های مقاومت خمی و مدل الاستپرسی به‌صورت معمول \(\pi_0 = \frac{\sigma_{mix}}{\sigma_{Al}} \) در نظر گرفته می‌شود.

\[
\sigma_{mix} = E_{mix} \left(\frac{E_{Al}}{E_{mix}} \right)^{-1} \]

با استفاده از داده‌های تحقیقی و روش SVD مقادیر سطح خازن بالا می‌باشد. این مقدار در شرایط مختلف، برای تغییرات مختلف، سطح خازن بالا می‌باشد.

\[
\begin{align*}
\pi_0 &= \frac{\sigma_{mix}}{\sigma_{Al}} \\
\pi_0 &= \frac{E_{mix}}{E_{Al}} \]

با استفاده از داده‌های تحقیقی و روش SVD مقادیر سطح خازن بالا می‌باشد. این مقدار در شرایط مختلف، برای تغییرات مختلف، سطح خازن بالا می‌باشد.

\[
\begin{align*}
\alpha &= \frac{h}{H} \\
\beta &= \frac{h}{H} \\
\gamma &= \frac{h}{H}
\end{align*}
\]

c\times 10^{-6} \\
3.51 - 0.211 \\
1.32

مقدار \(\pi_0 \) در واقع مقدار استیلیه می‌باشد. این مقدار در شرایط مختلف، برای تغییرات مختلف، سطح خازن بالا می‌باشد.

\[
\begin{align*}
\pi_0 &= \frac{\rho_{mix}}{\rho_{Al}} \\
\pi_1 &= \frac{\rho_{mix}}{\rho_{Al}} \]

با استفاده از داده‌های تحقیقی و روش SVD مقادیر سطح خازن بالا می‌باشد. این مقدار در شرایط مختلف، برای تغییرات مختلف، سطح خازن بالا می‌باشد.

\[
\begin{align*}
\alpha &= \frac{h}{H} \\
\beta &= \frac{h}{H} \\
\gamma &= \frac{h}{H}
\end{align*}
\]
بهطور معمول، برای ارزیابی دقت تنظیم راهی ارائه شده با استفاده از تحلیل اعداد برای ترکیب فرآیند ترکیب پودر تحت برگزاری ضریب یا به‌صورت آماری و پیش‌بینی بر اساس جدول میانگین مربوطات خطاها و ضریب پیش‌بینی فرمول اولیه و فرمول اولیه خلاصه شده‌های 1911 پس از برداخته شد، این دستگاه‌های 364 را با نوبت برای پایین‌الاصل داده‌ها و پیش‌بینی مطالب محاسبه شد. به‌طور کلی، مقایسه مدرج نسبت ضعف و میزان نسبت مدیون استانداردی این به‌طور کلی سه درجه سه‌گانه مربوطات خطاها با مدل‌های تحلیل‌های شده محاسبه شده است.

نتایج گسترده

در این مقاله تأثیر‌های قوی و قوی‌تری از دانه به‌وسیله سطح تحلیل‌های برای فرآیند ترکیب پودر از انتهای دانه و سطح آرتوا تحت برگزاری ضریب نرمال میانگین چکش پروابندی به‌صورت دقیق و تجربی کود بررسی قرار گرفت در بخش تجربی.

![شکل 15: چگالی نسبی محاسبه شده از رابطه (31) در هر آزمایش](image1)

![شکل 16: مقایسه نسبت ضعف و میزان نسبت مدیون محاسبه شده از رابطه (30) در هر آزمایش](image2)

![شکل 17: مقایسه نسبت ضعف و میزان نسبت مدیون محاسبه شده از رابطه (30) در هر آزمایش](image3)
به‌پایه خواص مکانیکی قطاع‌های تولیدی است
با توجه به نمودارهای رس، شده، نتایج بدست‌آمده از مدل‌های ریاضی
مطابقت نسبی با نتایج تجربی دارد درحالی که نوع و اندازه پودر و
همچنین فاصله چکل از پیستون تغییر می‌کند.
مقاومت نتایج تجربی و عددی نشان دهنده دقیق‌تری مدل‌های ریاضی
ارأی شده است گسترده که با مقایسه دقیق خطای آزمونی و پیش‌بینی
داده‌ها بر اساس مجزأ و مجزأ مربعات خطاطی و ضریب تبین، می‌توان به
موضوع اشاره شده بطور کامل پیدا کرد.

(30) شکل 20: مقادیر هر آزمایش (R²) برای مقادیر مختلف محاسبه شده در رابطه

(31) جدول 8: مقادیر میانگین مربعات خطاطی

(32) | RMSE | تابع ریاضی ارائه شده در رابطه |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.03</td>
<td>0.05</td>
<td>0.07</td>
<td>0.09</td>
<td>0.11</td>
</tr>
</tbody>
</table>

(33) شکل 21: مقادیر هر آزمایش (R²) برای مقادیر مختلف محاسبه شده در رابطه

(34) شکل 22: محاسبه شده در رابطه (1) در هر آزمایش

(35) شکل 23: محاسبه شده در رابطه (3) در هر آزمایش

(36) R² = 0.9765

(37) R² = 0.9906

(38) R² = 0.9982

(39) R² = 0.9884

(40) R² = 0.9902

(41) R² = 0.9894

(42) R² = 0.9765

(43) R² = 0.9906

آزمایش‌های است که با توجه به ارائه مدل ریاضی وابسته به پارامترهای
دخیل در آزمایش تجربی می‌تواند روند به‌هم‌شیاری داده‌ها را سعی و حکم‌های
کمتری انجام داد. ارائه چنین مدلی کام مفیدی در پیش‌بینی نتایج و همچنین

پایگاه مقتبل مدرس، مروارید 1394. دوره 13، شماره 5

365
<table>
<thead>
<tr>
<th>تراکم</th>
<th>سرامیک</th>
<th>ترکیب</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>cer</td>
<td>mix</td>
</tr>
</tbody>
</table>

6- فهرست علائم

<table>
<thead>
<tr>
<th>علائم</th>
<th>توضیح</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ضریب مجهر استفاده شده در معادله 17</td>
</tr>
<tr>
<td>C</td>
<td>قطر قطره</td>
</tr>
<tr>
<td>D</td>
<td>قطر داخلی سیلندر</td>
</tr>
<tr>
<td>E</td>
<td>مدول الاستپستیه (kgm⁻²s⁻²)</td>
</tr>
<tr>
<td>g</td>
<td>شتاب گرانش (m/s²)</td>
</tr>
<tr>
<td>h</td>
<td>ارتفاع چکش (m)</td>
</tr>
<tr>
<td>I</td>
<td>ممان اینرسي</td>
</tr>
<tr>
<td>L</td>
<td>فاصله نیکه گاهی (m)</td>
</tr>
<tr>
<td>m</td>
<td>جرم بودر (kg)</td>
</tr>
<tr>
<td>M</td>
<td>جرم چکش (kg)</td>
</tr>
<tr>
<td>P</td>
<td>نیروی نشتکت (kgm/s²)</td>
</tr>
<tr>
<td>U</td>
<td>انرژی پاسخ (kgm²/s²)</td>
</tr>
</tbody>
</table>

7- مراجع

