Numerical analysis of blade flutter in low-pressure turbine

Amir Meshkati Shahrizad, Saeed Irani, Mojtaba Farrokh*

Faculty of Aerospace Engineering, Kharaj Nasiri Toosi University of Technology, Tehran, Iran
* P.O.B. 16765-3381, Tehran, Iran, farrokh@kntu.ac.ir

Abstract

In this paper the flutter phenomenon in turbomachinery is introduced. The importance and characteristics of the flutter as a dynamic aeroelastic instability is presented. Conventional methods for the blade flutter test and different approaches in flutter analysis of blade are described. Among the existing analysis methods, one approach which only examines the stabilizing effect of fluid is used in order to analyze the flutter in this paper. Firstly, its equations are described and a criterion for the determination of the stability based on the analysis results is presented. According to the criterion the local and global stability can be concluded. Numerical analysis has been performed by ANSYS CFX.

Mesh independence and two different turbulence models have been examined and results have been validated by test results. Numerical analysis has been carried out for two steady and unsteady states. In unsteady state the response of blade to fluid vibration in three modes has been calculated. In order to assess the total response two methods have been used and the results have been compared. Eventually local instability is calculated and the results presented in the figures, which illustrates the contribution of adjacent blades in instability of specific blade. The evaluation of global instability for three modes has been presented and the obtained results are in excellent agreement with the experiment.

Keywords:
- Flutter
- Blade
- Turbine
- Stability
- Damping

Conflicts of interest

The authors declare that they have no conflicts of interest.

Accepted: 21 April 2016
Available Online: 18 May 2016

Downloaded from mme.modares.ac.ir at 3:23 IRDT on Wednesday June 30th 2021
3 Time-marching

Fig. 2 Failed compressor blisk in the CT7-9B engine due to HCF [5]

3-1-2 - Rheo-elastic Failed blisk in the CT7-9B engine due to HCF [5]

188

Fig. 1 Collar’s aeroelastic triangle

1 Non-synchronous

2 Collar

Mehrdad Fakr, MSc, 1395.2016.16 Shahr 5
3-1-3 Nomenclature

3-1-3 Nomenclature

3-2-1 Free span

3-2-1 Free span

3-3-1 Influence coefficients method

3-3-1 Influence coefficients method

3-4-1 Material damping

3-4-1 Material damping

Table of Flutter

Table of Flutter

Table of Flutter
دستگاه کوکب یکی از دانه‌های ارتباطی بحران و صرف‌نظر از جریان خودروییکی، شامل دو نخاوند کوتاه نیروی جریان و لایه‌ای از این می‌باشد. می‌توان حکایتی از این دستگاه را به صورت مداوم (15) نشان دهیم.

\[\vec{I} = \oint \vec{f} \cdot d\vec{r} ; \vec{m} = \oint \vec{m} \cdot d\vec{r} \]

معادله‌های (16) و (17) نیروی جریان و گشتاور در هر نقطه از پر را نشان می‌دهد.

\[d \vec{f}_x(x, t) = \vec{p}(x, t) n_x \, ds \]
\[d \vec{f}_y(x, t) = \vec{p}(x, t) n_y \, ds \]
\[d \vec{m}_x(x, t) = \vec{p}(x, t) (R \times n) \, ds \]

به این ترتیب اگر مولفه بازگشتی بردار جریانی در جهت مثبت محور را به صورت قدر مطلق در مختصات سطح جداکنده‌ی پر و گشتاور تعیین نمود، به‌همراهی کار اگر علامت منفی داشته، ان قطعه از پر براید و در غیر این صورت نیز پر براید است.

\[\vec{f}_x = \vec{f}_y = \vec{m} = 0 \]

5 - تریحی از آزمون

\[\frac{d \vec{W}}{dt} = - \beta \sum \big(\vec{R}(\text{توهای\text{ fantast}}) + \vec{R}(\text{توهای\text{ ریو\text{ fantast}}}) \big) \cdot n \, ds \]

\[F = F + \vec{R}(\text{توهای\text{ fantast}}) = F + \vec{R}(\text{توهای\text{ ریو\text{ fantast}}}) \]

\[\vec{M} = M + \vec{R}(\text{موی\text{ fantast}}) = M + \vec{R}(\text{موی\text{ ریو\text{ fantast}}}) \]

با جایگزین‌سازی معادله‌های (9) و (11) در معادله‌ای (4) فاقد کار انجام شده توسط پیانو ریو بر پر بررسی می‌گردد. این راه‌های ارائه شده می‌باشد.

\[\begin{align*}
\vec{W}_{\text{per\text{ cycle}}} &= \pi \left[h_{\text{in}} f_{\text{in}} \sin (\theta_{\text{in}}) + h_{\text{out}} f_{\text{out}} \sin (\theta_{\text{out}}) + \sin (\theta_{\text{in}} - \theta_{\text{out}}) \right] \]
\end{align*} \]

\[\begin{align*}
F(x, t) &= P(x) + \vec{R}(\vec{p}(x, t)) \]
\end{align*} \]

\[\begin{align*}
\vec{f}(x, t) &= \vec{r}(x, t) e^{i\omega t} \]
\end{align*} \]

\[\begin{align*}
\vec{W}_{\text{per\text{ cycle}}} &= \oint \vec{f} \cdot d\vec{r} = \oint \vec{f} \cdot d\vec{m} \]
\end{align*} \]

\[\begin{align*}
\vec{W}_{\text{per\text{ cycle}}} &= \oint \vec{f} \cdot d\vec{r} = \oint \vec{f} \cdot d\vec{m} \]
\end{align*} \]

\[\begin{align*}
\vec{f}(x, t) &= \vec{r}(x, t) e^{i\omega t} \]
\end{align*} \]
شکل ۵- گره‌بندی و سیستم ارایه‌کننده آزمون

شکل ۶- سیستم ارایه‌کننده در خمش

شکل ۷- سیستم ارایه‌کننده در محور عمودی

جدول ۱- پروفیل گره‌بندی

<table>
<thead>
<tr>
<th>مقادیر</th>
<th>واحد</th>
<th>نام</th>
<th>مختصات</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵۰</td>
<td>mm</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>۴۵</td>
<td>mm</td>
<td>(c_{ax})</td>
<td></td>
</tr>
<tr>
<td>۹۷</td>
<td>mm</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>۴.۵</td>
<td>deg</td>
<td>(p_c)</td>
<td></td>
</tr>
<tr>
<td>۱.۹۴</td>
<td>-</td>
<td>(z / c)</td>
<td></td>
</tr>
<tr>
<td>۳۸۳</td>
<td>mm</td>
<td>(r_{hub})</td>
<td></td>
</tr>
<tr>
<td>۴۸۰</td>
<td>mm</td>
<td>(r_{shroud})</td>
<td></td>
</tr>
</tbody>
</table>

\(1\) فرد استقلال
\(2\) بارگذاری
\(3\) تراز

از جهت مشاهده شکل ۶، ارایه‌کننده در خمش، برای ارایه‌کننده در محور عمودی، به عنوان خاصیت‌های مختلف برای گره‌بندی مورد بررسی قرار داده می‌شود.
Steady
Unsteady for non-oscillating blades
Unsteady for oscillating blades

Fig. 9 Measuring points coordinates

Table 2 Specifications and boundary conditions of test

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass flow rate</td>
<td>2.36 kg/s</td>
</tr>
<tr>
<td>Total inlet temperature</td>
<td>303 K</td>
</tr>
<tr>
<td>Total inlet pressure</td>
<td>112.3 kPa</td>
</tr>
<tr>
<td>Static inlet pressure</td>
<td>109.2 kPa</td>
</tr>
<tr>
<td>Static outlet pressure</td>
<td>102.9 kPa</td>
</tr>
<tr>
<td>Mass at the outlet</td>
<td>0.21 M_out</td>
</tr>
<tr>
<td>Mass at the outlet</td>
<td>0.37 M_out</td>
</tr>
<tr>
<td>Angle of attack</td>
<td>26° deg</td>
</tr>
<tr>
<td>Friction factor</td>
<td>0.1</td>
</tr>
</tbody>
</table>
تحلیل شیمیایی مدل‌سازی و همگرایی

جدول 3 مشخصات سه مشن‌بندی

<table>
<thead>
<tr>
<th>مشن‌بندی</th>
<th>تعداد المن</th>
<th>سطح مقطع میانی بهره (mm²)</th>
<th>کیفیت گذارگه</th>
<th>متوسط</th>
<th>ریز</th>
</tr>
</thead>
<tbody>
<tr>
<td>یده‌ای</td>
<td>40</td>
<td>0.487</td>
<td>48</td>
<td>72784</td>
<td></td>
</tr>
<tr>
<td>متوسط</td>
<td>64</td>
<td>0.104</td>
<td>26</td>
<td>230464</td>
<td></td>
</tr>
<tr>
<td>سریع</td>
<td>90</td>
<td>0.040</td>
<td>8</td>
<td>786630</td>
<td></td>
</tr>
</tbody>
</table>

6-1-1- استقامت نتایج مشن‌بندی

مشخصات سه مشن‌بندی در جدول 3 و نمای دو بعدی از آنها در شکل 11 مش نتایج با رای مشن‌بندی و مقایسه آنها با نتایج نس دیگر در شکل 12 است. در نتایج تجربی با استفاده از نرم‌افزار ANSYS بهره از گره‌های مکانیکی می‌باشد. استفاده از این روش داده‌های با هم مناسب است. در نتایج با استفاده از یکسکان بهترین نتیجه‌ای می‌باشد. طراحی به‌کار رفته در نرم‌افزار ANSYS بهره از گره‌های مکانیکی می‌باشد. استفاده از این روش داده‌های با هم مناسب است. در نتایج با استفاده از یکسکان بهترین نتیجه‌ای می‌باشد. طراحی به‌کار رفته در نرم‌افزار ANSYS بهره از گره‌های مکانیکی می‌باشد. استفاده از این روش داده‌های با هم مناسب است. در نتایج با استفاده از یکسکان بهترین نتیجه‌ای می‌باشد. طراحی به‌کار رفته در نرم‌افزار ANSYS بهره از گره‌های مکانیکی می‌باشد. استفاده از این روش داده‌های با هم مناسب است. در نتایج با استفاده از یکسکان بهترین نتیجه‌ای می‌باشد. طراحی به‌کار رفته در نرم‌افزار ANSYS بهره از گره‌های مکانیکی می‌باشد. استفاده از این روش داده‌های با هم مناسب است. در نتایج با استفاده از یکسکان بهترین نتیجه‌ای می‌باشد. طراحی به‌کار رفته در نرم‌افزار ANSYS بهره از گره‌های مکانیکی می‌باشد. استفاده از این روش داده‌های با هم مناسب است. در نتایج با استفاده از یکسکان بهترین نتیجه‌ای می‌باشد. طراحی به‌کار رفته در نرم‌افزار ANSYS بهره از گره‌های مکانیکی می‌باشد. استفاده از این روش داده‌های با هم مناسب است. در نتایج با استفاده از یکسکان بهترین نتیجه‌ای می‌باشد. طراحی به‌کار رفته در نرم‌افزار ANSYS بهره از گره‌های مکانیکی می‌باشد. استفاده از این روش داده‌های با هم مناسب است. در نتایج با استفاده از یکسکان بهترین نتیجه‌ای می‌باشد. طراحی به‌کار رفته در نرم‌افزار ANSYS بهره از گره‌های مکانیکی می‌باشد. استفاده از این روش داده‌های با هم مناسب است. در نتایج با استفاده از یکسکان بهترین نتیجه‌ای می‌باشد. طراحی به‌کار رفته در نرم‌افزار ANSYS بهره از گره‌های مکانیکی می‌باشد. استفاده از این روش داده‌های با هم مناسب است. در نتایج با استفاده از یکسکان بهترین نتیجه‌ای می‌باشد. طراحی به‌کار رفته در نرم‌افزار ANSYS بهره از گره‌های مکانیکی می‌باشد. استفاده از این روش داده‌های با هم مناسب است. در نتایج با استفاده از یکسکان بهترین نتیجه‌ای می‌باشد. طراحی به‌کار رفته در نرم‌افزار ANSYS بهره از گره‌های مکانیکی می‌باشد. استفاده از این روش داده‌های با هم مناسب است. در نتایج با استفاده از یکسکان بهترین نتیجه‌ای می‌باشد. طراحی به‌کار رفته در نرم‌افزار ANSYS بهره از گره‌های مکانیکی می‌باشد. استفاده از این روش داده‌های با هم مناسب است. در نتایج با استفاده از یکسکان بهترین نتیجه‌ای می‌باشد. طراحی به‌کار رفته در نرم‌افزار ANSYS بهره از گر...
برای مود خم محرکی در شکل 15 دانه و فاز ضربه تفاوت بین نوسان بر روی پره ۰ مود خم محرکی

شکل 15 دانه و فاز ضربه فشار پره ۰ مود خم محرکی

[نمودار]

شکل ۱۶ کانتور فشار

بره مرجع در حال نوسان فاصله بیشتر شود از نوسان بر سیر کمتر و ممولا
از اثرات آن روی پره برای سیم به بعد صرف نظر می‌شود بلکه شکل‌های ۱۷ تا
با دقت سیسی‌های پروپوز شده، تکنیک ارائه شده خود را به حالت مدرک
ان رجوع با استفاده از محدوده دو اینجا شده که در آن از اثرات لزجت
سایر صرف نظر می‌شود در حالی که در حالت این پروپوز از محدودات
نابور استوکس که آرت لزجت را در نظر می‌گیرد استفاده شده است.
آن‌جا که این در میان این آزمون مشابه این نتایج دانه فشار بیشتری
نسبت به نتایج آزمون بسته می‌آورد.

شکل ۱۳ دانه و فاز ضربه فشار بر ۱ مود خم محرکی

[نمودار]

شکل ۱۴ ضربه فشار در مقطع % ۹۰ عرض پره

[نمودار]

در این روش همه پره‌های نوسانی که کنده و در خلاف روش شرایط تابع
که تنهای نیست آن روه‌های پره همه یکدیگر مشابه است
که شامل اثر نوسان همه پره‌ها است محاسبه می‌شود.
که در نهایت نوسان همه پره‌ها است محاسبه می‌شود.
در نهایت نوسان همه پره‌ها است محاسبه می‌شود.

شکل ۱۵ دانه و فاز ضربه فشار بر ۰ مود خم محرکی

[نمودار]
تریومانیس از مدل‌های دیفرانسیل‌گیری کافی استفاده می‌کند. مدل استفاده شده برای حل فلتر، برنامه‌نویسی این است که از آن برای اندازه‌گیری اختراف فاکتورهای استفاده می‌شود. معادله‌های (24) و (25) نتیجه محاسبه‌ای اختراف فاکتورهای را نشان می‌دهند:

\[
\sigma_{\text{forward}} = \frac{2\pi ND}{N(N - ND)}, ND = 1, 2, \ldots, N_{\text{max}}
\]

\[
\sigma_{\text{backward}} = \frac{2\pi N}{N(N - ND)}, ND = 1, 2, \ldots, N_{\text{max}}
\]

\[
N_{\text{max}} = \frac{N}{2}, N \text{ even}
\]

\[
N_{\text{max}} = \frac{(N - 1)}{2}, N \text{ odd}
\]

در توضیح قطع گرداهای می‌توان گفت که اگر مقدار ان واژه این کافی فاکتورهای محاسبه‌ی این است و فاکتورهای محاسبه‌ی این از برابر یک گرداه باهم یک گرداه در همین ترتیب به کاهش نیست. این گرداه از کاهش بهبود مقدار از 2 باشد. یعنی به وجود 2 از مقدار قبل در همینتنهای قطع گرداه 0 ناشی می‌شود. در شکل 20 نشان گرداه دو مقدار قطع گرداه و نهایی قرارگیری بهره‌ها در یک رفت‌آمیزه به‌مدت آمد است.

1-2-6 مقایسه نتایج روش مدول متحرک با پرتاب اول و آزمون

برای مقایسه نتایج روش، پایه‌بند با پایه از آماده از روش پرتاب تا ناشی از استفاده از مدل‌های (28) جمع کرده و پاس کل را درست آورده

\[
\text{Fig. 20 Schematic of two values of nodal diameter and position of blades}
\]

\[
\text{Fig. 17 Pressure coefficient amplitude and phase; blade-2; axial bending}
\]

\[
\text{Fig. 18 Pressure coefficient amplitude and phase; blade-1; axial bending}
\]

\[
\text{Fig. 19 Pressure coefficient amplitude and phase; blade0; axial bending}
\]
شده است که در حالتی که نوسان پرده‌ها گوچک باشد مقداری (28) دقت

\[C_{p,\text{norm}}(x, t) = \sum_{n=1}^{N} C_{p,n}(x, t) e^{-i\omega t} \]

که \(C_{p,n} \) ضریب مختلطی است که در نوسان پرده‌های b، c، دردب ب داشته اند. در نوشان پرده‌های a دردب باشند مقداری (28) دقت

\[C_{p,n} = C_{p,n} \text{norm} \]

به نظر می‌رسد که شکل 10 نادات نقاط انتهایی متناهی روی پرده در آزمون

انجام شده در مرجع [1]، این واقعیت نمایش داده از روش نشان داده شد که روش این روش اثربخشی برای هر سه مود

اهمان است. همانطور که ملاحظه شود نتایج روش مود متحرک به

\[\frac{\theta}{90} = \phi \]

شکل 23 دامنه و فاز ضریب فشار بخش کل \(\sigma = 90^\circ \); پرده 1 - پیچش

\[\frac{\theta}{90} = \phi \]

شکل 21 دامنه و فاز ضریب فشار بخش کل \(\sigma = 90^\circ \); پرده 1 - ادردگی

شکل 22 دامنه و فاز ضریب فشار بخش کل \(\sigma = 90^\circ \); پرده 1 - خم محرکه

\[\frac{\theta}{90} = \phi \]

شکل 4 پرده‌ای محرکه

شکل 6 پرده‌ای محرکه

شکل 8 پرده‌ای محرکه

شکل 10 پرده‌ای محرکه

شکل 12 پرده‌ای محرکه

شکل 14 پرده‌ای محرکه

شکل 16 پرده‌ای محرکه

شکل 18 پرده‌ای محرکه

شکل 20 پرده‌ای محرکه

شکل 22 پرده‌ای محرکه

شکل 24 پرده‌ای محرکه
در این پژوهش نخست تعدادی فلتر در نورون‌های معرفی شد و سپس به ویژگی‌ها و عوامل مؤثر بر آن برداشت شد. رویکرد محاسباتی تحلیل فلتر و روش‌های مختلف آزمون انتخاب و سپس مداخله کننده تحلیل فلتر در این پژوهش انتخاب و سپس منطق رسمی محاسبه بر آن تغییر گردید. مقایسه پایداری محیط و کلی و نیز روابط مربوط به آن‌ها ارائه گردید. با استفاده از نرم‌افزار اسپیس به عنوان ابزار حل عددی، تجزیه و تحلیل آزمون شبیه‌سازی شد این نتایج از نظری و نتایج مقایسهی توپولوژی بر نتایج حل بررسی گردید. نتایج بدست آمده با تجربه آزمون مرجع [1] و حل عددی همان مرجع مقایسه شد. نتایج بررسی پایداری محیط

