Finite element analysis and experimental investigation on gas forming of hot aluminum alloy sheet

M. S. Zoei, M. Farzin1*, A. H. Mohammadi2
1-Master of Science, Isfahan Univ. of Tech.
2-Assoc. Professor, Isfahan Univ. of Tech.
3-Master of Science, Isfahan Univ. of Tech.
*P.O.B. 84156, Isfahan Iran. farzin@cc.iut.ac.ir

Abstract-Aluminum alloys are desirable in industry due to their excellent high-strength to weight ratio, corrosion resistance, and weldability. However, at room temperature, the formability and the surface quality of the final product of these alloys are low. So in recent decade, new process, hot metal gas forming, has been introduced. This paper investigated new method of hot aluminum alloys forming using gas. Experimental test for bulge forming was designed and made. In addition to experimental test, finite element analysis of process was done. Results showed that hot metal gas forming provides highest forming temperature for aluminum alloy blank and with increasing blank temperature up to optimum temperature of hot forming, there is reduced pressure forming and significant improvement of formability. Results of experimental test and finite element analysis including determination of optimum temperature for forming of special aluminum alloy, maximum formability in this process, required forming pressure, minimum thickness, thickness and temperature distribution were conformed.

Keywords: Hot forming, Bulge forming, Finite Element analysis, Aluminum alloy.

1. Bulge forming
2. Finite Element Method
1- مقدمه

امروزه در صنعت خودرو به منظور کاهش مصرف سوخت و هیچ‌چیز بهبود امکان‌پذیری تحریک و تولید قطعات پیچیده، کاربرد ماده سبک یون مناسب آلیاژهای آلومینیوم به صورت جدی مورد توجه قرار گرفته است. بنابراین صنعت خودرو نیازمند ماده و پره‌سوزی تولید خودروهای سبک و ایمن تر می‌باشد.

هیدروفورمینگ پروسه‌ای جدید برای تولید خودرو سبک می‌باشد. در این روش به‌جای سیب و یا ماریس، از فشار سیال برای شکل‌دهی استفاده می‌شود و قطعاتی که پیکاره حاصل می‌شود که در گذشته با یون‌ریزی چند قطعه بر‌ساخته شده تولید می‌شود. با استفاده از این روش، می‌توان قطعات را با استحکام بالا و ضخامت کمتر تولید کرد. بنابراین به کاهش وزن قابل توجه دست داده، هیچ‌چیز با حذف نقط جوش به واسطه تولید قطعات بکار، صلیبی قطعه افزایش می‌یابد. اما هیدروفورمینگ دارای محدودیت‌های پذیری ضعیف و خود کار (مختصاً استفاده از قطعات آلیاژهای آلومینیوم در دو جهت حرارت) محیط و فشار بالای مورد نیاز ایست. این محدودیت‌ها بر قطعه تولید می‌تواند بر تولید ایزاب و بهبود ایزاب تاثیر نامطلوبی اندازه گیری کند. علاوه بر این، هیدروفورمینگ زمان سیکلی به‌همان‌های مطابق است. به کاربرد نزدیک‌تری محوری به مقدار قابل توجهی به نسبت طول لوله به قطر یک بسته دارد. بعاد فشار بالایی شکل‌دهی در این قابلیت، به‌طور پایدار با نابی‌گردانه باید به‌صورت ساختاری شونده که فشارهای بالا احتمال کند. همچنین استفاده از ماده در هیدروفورمینگ تغییر نمی‌کند.

2. کاربرد

پوشش آرایشگاهی قرار گرفته‌اند. علاوه بر این، فشارهای بالا تولید شده در این قابلیت، به‌طور پایدار با نابی‌گردانه باید به‌صورت ساختاری شونده که فشارهای بالا احتمال کند. همچنین استفاده از ماده در هیدروفورمینگ تغییر نمی‌کند.

1. General Motors
در این مقاله روش نوین شکل دهی ورق آلبی آنالوگی‌ای، توسط گاز برای نخستین بار، در شرایط نست 3003- AA7075 توسط گاز برای نخستین بار، در شرایط نست عملی و تحلیل داده‌های مربوط بررسی قرار گرفته است. روش حرارت دهی به ورق و عایق بندی مجموعه به کار رفته در این بررسی، روشی نوین در فرایند شکل دهی داغ ورق می‌باشد.

س. شکل دهی ورم

شکل دهی ورم به عنوان اولین قدم برای وارد شدن به آزمایشات عملی انتخاب گردد. ورق در نست ورم به شکل گنبدی تغییر شکل می‌دهد که با الارتن و تغییر تکه‌انگیزونه از لغزش ورق بین قالب‌ها، تغییرورق‌گری این قالب باالایی و پایین‌پایی به اندازه کافی برزگ باشد. بنابراین در این نست ورم فقط انسجام بانده و هیچ کششی رخ نمی‌دهد. همچنین تغییر شکل در این نست متاثر از اصطکاک نمی‌باشد. اثره شدن ورق با کاهش ناگهانی فشار مشخص می‌شود. ارتفاع گنبده حاقل نماینده این نست در مبحث شکل دهی به عنوان معیاری شکل هیدر شناخته می‌شود. شکل دو ورق شکل گرفته در شکل دهی ورم را نشان می‌دهد.

شکل 1

شکل دو ورق داغ توسط گاز

شکل 2

شکل دهی ورم در شکل دهی ورم برای شکل دهی یک نیم کره، تنش‌ها

در شکل دهی ورم در شکل دهی یک نیم کره، نشان داده می‌شود که در نقطه

بر اثر گیتی شکل فرض می‌شود. رابطه زیر برقرار است:

\[\sigma_h = \sigma_m \quad \varepsilon_i = 0 \quad \sigma = \sigma_h \]

(1)

که به ترتیب تنش‌های محیطی، نصف‌الهاری، ضخامت و نش معامل و میزان می‌باشد.

نش مطلق توسط رابطه (2) به دست می‌آید:

\[\varepsilon_h = \frac{P \rho}{2t} \]

(2)

که فشار شکل دهی، شعاع انحنای و تنش ورق است. مولفه‌های کرنش برای کشش مساوی دوموره با فرض حجم ثابت عبارتند از:

\[\varepsilon_h = \varepsilon_m, \quad \varepsilon_i = 0 \quad \sigma = \varepsilon_i \]

(3)

که به ترتیب کشش‌های محیطی، نصف‌الهاری، ضخامت و کرنش معامل و میزان می‌باشد. در

نش مطلق دو ورق در شکل دهی نتایج ضخامت و ورق متوم در T

زاویه شکل دهی T بهصورت رابطه (4) به دست می‌آید:

3. Hoop
4. Meridional
5. Thickness

1. Dome
2. Pole
با توجه به معادلات (8) و (10) هنگامی نقطه ناباید رخ می‌دهد که:
\[
\frac{1}{\sigma_s} \frac{d \sigma_s}{d \epsilon_t} = \frac{\rho}{\rho - \epsilon_t h} = 0
\]
(11)
\[
\frac{1}{\sigma_s} \frac{d \sigma_s}{d \epsilon_t} = 1 - \frac{\rho}{\rho - \epsilon_t h}
\]
(12)
\[
\sigma = A(B + \epsilon_t^2)^n
\]
منطقی شود و در این رابطه \(A \) اندیسه استحکام پایه ماده و \(n \) مستقل از حالت اولیه است و باین حالت اولیه ماده اندازه میزان سختی ایجاد شده در اثر کرنش است (کرنش سختی). کرنش ضخامتی قبیلحی در فشار حداکثر توسط معادله درجه دوم زیر حاصل می‌شود [6].
\[
\epsilon_r = \left(\frac{n+1}{n} \right) \epsilon
\]
(13)
\[
\text{برای یک ماده کامل آنیل شده} \quad B \quad \text{صفر است و در نتیجه:}
\]
\[
\epsilon_r = \frac{1}{n+1} \epsilon
\]
(14)
\[
t = t_0 \exp(-\hat{\epsilon}T)
\]
(4)
\[
kه ضخامت اولیه ورق و \(\hat{\epsilon} \) نرخ کرنش موثر می‌باشد.
\[
\text{ترکیب روابط (1) و (2) را برای پیچیدن فشار - زمان شکل دهی نتیجه می‌دهد.}
\]
\[
P = 4 \frac{\Delta \sigma_0 \exp(\hat{\epsilon}T)}{R}[\sigma - \sigma \exp(-\hat{\epsilon}T)]^\frac{1}{2}
\]
(5)
\[
\text{که شعاع قابل} \quad R \quad \text{و} \quad \hat{\epsilon} \text{نش جریانی مؤثر است. بنابراین}
\]
\[
\text{رابطه (5) می‌تواند برای کنترل فشار شکل‌دهی در نتیجه }
\]
\[
\text{آزمایشگاهی به کار برده شود [5].}
\]
\[
\text{همچنین از روابط مذکور در توری هیل} \quad 1 \text{ و نتایج حاصله در مورد کرنش ضخامتی به عنوان معیار ناباید اگر}
\]
\[
\text{شبه‌سازی استفاده می‌شود. بنابراین ضخامت نهایی بر اساس}
\]
\[
\text{توری هیل به‌صورت زیر تعیین می‌شود:}
\]
\[
\text{از رابطه (2) مقدار فشار به‌صورت رابطه (3) باشد:}
\]
\[
P = \frac{\sigma_0}{\hat{\epsilon}}
\]
(6)
\[
\text{در نابایدی} \quad 0 \text{ ابتدا و}
\]
\[
\frac{d \sigma_s}{\sigma_s} = \frac{d \rho}{\rho} = \frac{d \rho}{d \epsilon_t}
\]
(7)
\[
\frac{1}{\sigma_s} \frac{d \sigma_s}{d \epsilon_t} = 1 + \frac{1}{\rho} \frac{d \rho}{d \epsilon_t}
\]
(8)
\[
\text{یک رابطه ساده هندسی برای ورم گروی} \quad R \text{ عبارت است از:}
\]
\[
h(\rho + h) = R
\]
(9)
\[
\text{یا}
\]
\[
\rho = (R + h') / \sqrt{h}
\]
(10)
\[
\text{که ارتفاع قطب است.}
\]

جدول 1

<table>
<thead>
<tr>
<th>عنصر</th>
<th>Al</th>
<th>Cu</th>
<th>Fe</th>
<th>Zn</th>
<th>Mn</th>
<th>Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصد</td>
<td>11</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>01</td>
<td>09</td>
</tr>
</tbody>
</table>

1. Hill
2. Spherical Bulging
شکل 4 ورق شکل گرفته در تست آزمایشگاهی

- تحلیل الگوی محدود

برای شکل‌های استوانه‌ای و قبلاً ساخته شده که در قسمت قبل داده شده بودند، اطلاعات گرفته شده با استفاده از سیستم حل مسائل سه‌بعدی ABAQUS/EXPCLICT در نرم‌افزار ANSYS به عنوان پیش‌نگاری گرفته شده است. با استفاده از نرم‌افزار ANSYS و شبیه‌سازی‌های محدود، شکل‌های استوانه‌ای و توانایی شکل‌های استوانه‌ای در حالت استیل و فرضیات استراتژیک باید در نظر گرفته شوند.

1. Deformable
2. Analytical rigid

**البیری‌های ناگفته علت‌های حساسیت است و در مواردی که به قابلیت شکل‌پذیری و سطح پیش‌گرفته استفاده می‌شود، شیب‌های افزایشی و انرژی اندازه‌گیری، تغییرات سطحی، تغییرات شکلی و سطح قابلیت پذیری حساسیت است. به منظور

سیستم الگوی محدود اجرا شده تا دمای C، سر راه جریان عملی که نشان‌دهنده استحکام بالاتری نسبت به آلومینیومیه ایالولی می‌باشد. حضور مگنز استحکام متوسط و شکل‌پذیری عالی به آنی می‌دهد.

شکل 2 مراحل تست ورم
بله منظور تعبیر نمودار نش-کرنش می‌باشد در درجه‌های ترکیبی و نرخ‌های کرنش مختلف، تست‌های کشش داغ نشک محدود انجام می‌شود. در شیب‌های خواص AA6063 به‌دست آمده توسط ایدرایو و کیولاکوف مطابق شکل‌های 5 و 7 به کار برده می‌شود.

در شیب‌های مختلف نمودار نش-کرنش برای آلیاژ آلومینیوم 3003 در دماهای مختلف [6]

شکل 6 نمودار نش-کرنش برای آلیاژ آلومینیوم 3003 در دماهای مختلف

کرنش (K)

شکل 7 نمودار نش-کرنش برای آلیاژ آلومینیوم 3003 در دماهای مختلف [7]

3. Forming Limit Diagram
4. Barlat

1. Abedrabbo
2. Kalakov
شکل ۱۰ نتایج آزمایش دما بر روی توزیع ضخامت در محصول با ضخامت اولیه ۰/۵ میلی‌متر

مقایسه نتایج حاصل از بررسی تست آزمایشگاهی و المان محدود نشان می‌دهد، تطابق تدریجی در نتایج وجود دارد. علت تفاوت موجود مابین این نتایج عبارتند از: کاربرد نتایج تست کشش نک محوره در تحلیل المان نرم آفرزایی فرانکی به ماده تحت تنش نک محوره قرار نداده، کاربرد ضربه اصطکاک مستقل از دما مابین ورق و اجرای قالب در تحلیل المان نرم آفرزایی با این وجود دارد خطاً مابین نتایج قابل قبول می‌باشد.

جدول ۲ نتایج حاصل از تست آزمایشگاهی

<table>
<thead>
<tr>
<th>کمترین ضخامت (mm)</th>
<th>ارتفاع حاصله (mm)</th>
<th>فشار گاز شکل‌دهی (bar)</th>
<th>ضخامت اولیه ورق (mm)</th>
<th>دمای ورق (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/22</td>
<td>0/09</td>
<td>0/08</td>
<td>0/5</td>
<td>25</td>
</tr>
<tr>
<td>0/20</td>
<td>0/10</td>
<td>0/06</td>
<td>0/0</td>
<td>200</td>
</tr>
<tr>
<td>0/28</td>
<td>0/07</td>
<td>0/06</td>
<td>0/05</td>
<td>450</td>
</tr>
<tr>
<td>0/24</td>
<td>0/06</td>
<td>0/05</td>
<td>0/05</td>
<td>400</td>
</tr>
<tr>
<td>0/14</td>
<td>0/05</td>
<td>0/04</td>
<td>0/05</td>
<td>350</td>
</tr>
<tr>
<td>0/16</td>
<td>0/04</td>
<td>0/04</td>
<td>0/05</td>
<td>300</td>
</tr>
</tbody>
</table>

نتایج شامل فشار گاز به کاررفته، ارتفاع گردا و کمترین ضخامت در نقطه گنبدی شکل در چند نوع شرایط دما و ضخامت اولیه ورق مربوط به تست آزمایشگاهی در جدول ۲ و تحلیل المان محدود در جدول ۳ ارائه شده است.

این نتایج نشان می‌دهد که افزایش دما مقدار فشار مورد نیاز برای شکل دهی ورق را کاهش می‌دهد. همچنین با افزایش دما ارتفاع گردا افزایش می‌یابد و در نتیجه شکل‌پذیری آلایندر اولین میانگین بار رفتاری بین مقدار قابلیت ماده برای تحمیل تغییر شکل بلاستیک بدون شکست، بهبود می‌یابد.

نتوی دو نتایج دیگری در دمای مختلف شکل‌دهی بکار رفتن

می‌باشد. (شکل ۱۰) ضخامت ورق در فاصله ورق گردا مابین قالب و ورق گردا نتئی و برقراری ضخامت اولیه است. در محل شروع خوش‌دست ورق بر روی شاخه قالب، یک محدوده کاهش و سپس افزایش ضخامت ورق وجود دارد و پس از آن کاهش ضخامت تا رسیدن به محدوده ضخامت در رأس گنبد ورم
نیاز وجود خواهد داشت که شاید نیروهای شکل‌دهی در پروسه سبب کاربرد پرس با نازک کم کاربرد اسان‌تر در جریه حاره و کنترل درجه حاره کارش خود تگذیر نگهدارند. فضای کارگاهی مورد نیاز کوچکتر و کاهش هزینه می‌شود. تحلیل الگوهای فرآیند شکل‌دهی داغ فاز توسط گاز شناس که تطبیق مناسبی بین نتایج حاصل از شبیه‌سازی و نتایج آزمایشگاهی برقرار می‌باشد، در نتیجه می‌توان از نتایج شبیه‌سازی الگوهای محاسبه، به عنوان روش قابل اعتمادی برای بررسی امکان پذیری، تعیین شرایط و پارامترهای موثر فرآیند استفاده نمود.

جدول ۳: نتایج حاصل از تحلیل الگوهای محاسبه

<table>
<thead>
<tr>
<th>شکل‌دهی</th>
<th>ضخامت (mm)</th>
<th>ارتفاع (mm)</th>
<th>فشار گاز (bar)</th>
<th>ضخامت اولیه (mm)</th>
<th>دمای ورق (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/154</td>
<td>0.00025</td>
<td>25</td>
<td>0.249</td>
<td>25</td>
<td>0.05</td>
</tr>
<tr>
<td>1/168</td>
<td>0.00035</td>
<td>25</td>
<td>0.249</td>
<td>25</td>
<td>0.05</td>
</tr>
<tr>
<td>1/182</td>
<td>0.00045</td>
<td>25</td>
<td>0.249</td>
<td>25</td>
<td>0.05</td>
</tr>
<tr>
<td>1/200</td>
<td>0.00055</td>
<td>25</td>
<td>0.249</td>
<td>25</td>
<td>0.05</td>
</tr>
</tbody>
</table>

با مقایسه نتایج حاصل از دو مقدار ضخامت اولیه ورق در هر یک از تحلیل‌های آزمایشگاهی و ترمیم‌های مشخص می‌شود که فشار مورد نیاز برای شکل‌دهی ورق با آزایش ضخامت ورق به‌سیان قابل توجهی (در بررسی حاضر در حداکثر ۳ برابر) افزایش می‌یابد. با توجه به کاربرد فشار گاز در این روش و رعایت این منابع نتایج این آزمایش‌ها باید برای در شرایط کاربرد تغییر فرم کم‌تر نازک، برای ورق‌هایی به ضخامت کم (کمتر از ۱ میلی‌متر) مناسب می‌باشد.

مقاومت توزیع ضخامت در شرایط دما به حاصل از تست آزمایشگاهی و شبیه‌سازی در شکل ۱۱ نشان داده شده است.

![نمودار مقایسه توزیع ضخامت حاصل از ترمیم آزمایشگاهی و شبیه‌سازی در دمای ۵۰°C ورقت](https://example.com/plot.png)

۶- نتیجه‌گیری

در این بررسی روش نوین شکل‌دهی داغ توسط گاز، امکان رسیدن به بالاترین دمای شکل‌دهی را فراهم می‌کند و با آزایش دمای ورق تا دمای بهینه کاشش قابل توجه فشار مورد