Energy, exergy, economic, environmental (4E) analyses of a solar organic Rankine cycle to produce combined heat and power

Leyli Ariyanfar, Mortaza Yari*, Ebrahim Abdi Aghdam

Department of Mechanical Engineering, Faculty of Engineering, University of Mohaghegh Ardabili, Ardabil, Iran

* P.O.B. 5619911367 Ardebil, Iran, myari@uma.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 16 June 2016
Accepted 12 August 2016
Available Online 15 October 2016

Keywords:
Organic Rankine cycle
Solar energy
Cogeneration of heat and power
Environmental
Economic

ABSTRACT

In this paper, with a comprehensive approach the energy, exergy, economic and environmental (4E) analyses of an organic Rankine cycle (ORC) to produce combined heat and power (CHP) based on solar energy have been performed. In order to perform a plenary survey, after thermodynamic modeling of the ORC, the study of the flat plate solar collectors (FPC), parabolic through solar collectors (PTC) and gas-fired boiler as the energy supplier equipment in the independent or combination models, as well as in the open or circulated state of the heat source flow have been done. In the open heat source flow state, the outlet flow of heat source at temperature of 80 °C is used to provide required energy in different sectors; however, in the circulated flow state, the amount of required primary energy is less than the open heat source flow state. Also, the use of photovoltaic panels to provide the pumping power of cycle is studied. The calculations show that the cost of produced power from lowest to highest is related to the use of gas-fired boiler, parabolic trough solar collector, photovoltaic panels and flat plate solar collectors respectively. Also, because of the efficient use of energy resources in the combined heat and power generation (open heat source flow) compared to power generation (circulated heat source flow), the energy and exergy efficiencies are increased 9.861% and 9.811% respectively; although the open heat source flow system compared to circulated flow system require higher investment cost.

Please cite this article using:

همه‌پرداز بر اساس برای درد.

رازنده و همکاران [9] بررسی فنی و زیست‌محیطی جرخه‌های راکنی بوده‌اند. آن‌ها تحقیقاتی انجام داده‌اند که نشان‌دهنده اهمیت طبیعی جرخه در مدارهای 95 تا 180 درجه برداشتگان پایین‌تر یکی از اهداف آن‌ها آن‌ها نشان داده که با استفاده از تحقیقات جدید، تمامی متغیرهای جرخه در مدارهای 70 تا 85 درجه، در این شرایط در اینجا مشاهده نمی‌شود.

همکاران [10] بررسی این جرخه راکنی‌های آلی با منبع از همکاری و وابسته به سیستم تولید هم‌زمان توان آوری انجام داده‌اند. نتایج آن‌ها نشان داده که سیستم تولید به درجه بالایی در درک مدارهای 160 تا 100 درجه، در همه شرایط، در این شرایط در اینجا مشاهده نمی‌شود.

همکاران [11] در مدل‌سازی ورودی و افتخاراتی که سیستم تولید هم‌زمان توان آوری در مدارهای 70 تا 85 درجه، بررسی کردند. نتایج آن‌ها نشان داده که سیستم تولید به درجه بالایی در درک مدارهای 160 تا 100 درجه، در همه شرایط، در این شرایط در اینجا مشاهده نمی‌شود.

همکاران [12] بررسی این جرخه راکنی‌های آلی با منبع از همکاری و وابسته به سیستم تولید هم‌زمان توان آوری انجام داده‌اند. نتایج آن‌ها نشان داده که سیستم تولید به درجه بالایی در درک مدارهای 160 تا 100 درجه، در همه شرایط، در این شرایط در اینجا مشاهده نمی‌شود.

همکاران [13] در مدل‌سازی ورودی و افتخاراتی که سیستم تولید هم‌زمان توان آوری در مدارهای 70 تا 85 درجه، بررسی کردند. نتایج آن‌ها نشان داده که سیستم تولید به درجه بالایی در درک مدارهای 160 تا 100 درجه، در همه شرایط، در این شرایط در اینجا مشاهده نمی‌شود.

همکاران [1] بررسی این جرخه راکنی‌های آلی با منبع از همکاری و وابسته به سیستم تولید هم‌زمان توان آوری انجام داده‌اند. نتایج آن‌ها نشان داده که سیستم تولید به درجه بالایی در درک مدارهای 160 تا 100 درجه، در همه شرایط، در این شرایط در اینجا مشاهده نمی‌شود.
Table 1 Various states of heat source energy and its flow type

<table>
<thead>
<tr>
<th>Inputs:</th>
<th>Outputs:</th>
<th>Solar energy</th>
<th>Geothermal energy</th>
<th>Waste heat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solarenergy</td>
<td>Power</td>
<td>Hydrogen</td>
<td>etc</td>
<td></td>
</tr>
<tr>
<td>Geothermal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wasteheat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2 Various ORC inputs and outputs

Legend:
- ORC
- PTC
- Gasifier boiler
- Water boiler
- Heat exchanger
- Storage tank
- Feed water
- Hot water for CHP

Fig. 3 Various types of cycle with open heat source flow for CHP

Fig. 4 Various types of cycle with circulated heat source flow

Fig. 5 Various types of cycle
مدل سازی ترموپنوماتیک کلکتر تخت

2-3

در این بخش، برخی مربوط به تحلیل آرزی کلکتر تخت ارائه می‌شود. انتزاع می‌گذارد که سطح توزیع اثرات (15) قابل محاسبه است.

\[
Q_{x} = \dot{m}c_{p}(T_{out} - T_{in})
\]

(15)

در دیال، گرمایی و به‌عنوان شکل، بیل و تگ تصلب‌های تاکید نشان می‌دهند \(h_{p} \).

\[
Q_{u} = A_{K}R_{e}[S - U_{L}(T_{in} - T_{a})]
\]

(16)

ماصحت سطح جابجایی کلکتر، دمای محیط و \(U_{L} \) انتقال حرارت از کلکتر به محیط است که برای مجموع سطح راه بهره‌برداری می‌شود.

\[
U_{L} = U_{L} + U_{b} + U_{e}
\]

(17)

در این هنگام، تاکید به مقادیر متغیر \(F_{r} \) و زمان سیال به‌عنوان محیط مورد استفاده است از انتزاع می‌پذیرد که سطح حرارتی در دو مورد ورودی وارد و بررسی رابطه (18) بیان می‌شود.

\[
F_{r} = \frac{\dot{m}c_{p}}{U_{L}} \left(1 - \exp \left(-\frac{U_{L}h_{p}}{\dot{m}c_{p}} \right) \right)
\]

(18)

فکتور به‌مثابث کارایی کلکتر و به‌عنوان سبب فضای آزاد در سطح حرارتی با محیط است. این اینکه در واقع تاکید از استفاده از دست انداز انتزاع فذین واقعی به‌صورت محاسبه‌ای می‌شود.

\[
F = \frac{1}{W} \left(\frac{1}{U_{L}} + \frac{1}{U_{b} + U_{e}} \right)
\]

(19)

با توجه به این‌که، ارائه ورودی طبیعی در دو مورد ورودی وارد و بررسی رابطه (20) قابل محاسبه است.

\[
m = \sqrt{\frac{U_{L}}{k_{s}}}
\]

(21)

به‌عنوان شکل و سلنیوم‌دانه حرارتی تفاوتی دارد است. انتزاع حرارتی در واحدهای سطح جابجایی است که برای مجموع \(\eta_{F} \) در دست‌رسی و در فضای آزاد و محیط بیشتر می‌باشد که از رابطه (22) به‌دست می‌آید.

\[
S = (\pi r_{e})_{b} r_{e} + \pi L_{r} S = \eta_{F} L_{r}
\]

(22)

شایان نشان دهنده حرارتی وجود دارد به‌عنوان کلکتر می‌باشد.

\[
S = (\pi r_{e})_{b} r_{e} \quad \text{و} \quad S = \eta_{F} L_{r}
\]

(23)

\[
\eta_{F} = (\pi r_{e}) L_{r} + \eta _{g} L_{g}
\]

(23)

در نهایت برای تونل‌های انرژی گذاری صفحه جمع‌آوری شده است.

جدول 2: شرایط ترموپنوماتیک جریان خریداری

<table>
<thead>
<tr>
<th>شرایط</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>طول تونل</td>
<td>110</td>
</tr>
<tr>
<td>بار سیال</td>
<td>130</td>
</tr>
<tr>
<td>تانزانی</td>
<td>100</td>
</tr>
<tr>
<td>فشار نیروی</td>
<td>140</td>
</tr>
<tr>
<td>دمای سیال</td>
<td>120</td>
</tr>
<tr>
<td>دمای جریان</td>
<td>1000</td>
</tr>
<tr>
<td>توان نیروی</td>
<td>1000</td>
</tr>
</tbody>
</table>

مثال

برای تعیین باره‌ارگی کلکتر و تحلیل این مدل ترموپنوماتیک ضروری است. \(\text{بهرام باکر} \) طریقه‌ای از ابزار تاکید بر اثرات (9) قابل محاسبه است.

\[
E_{x} = \frac{h_{L}}{h_{B} - h_{L} - T_{in}} (s_{1} - s_{0})
\]

(9)

در نهایت، توزیع سطح اگزیسیون کلکتر که به رابطه (10) خواهد بود.

\[
E_{x} = m\dot{E}_{x}
\]

(10)

در نهایت، توزیع کل اگزیسیون کلکتر از رابطه (12) می‌شود.

\[
E_{x} = E_{x\text{ev}} + W_{\text{pump}}
\]

(11)

\[
E_{x} = E_{x\text{con}} + W_{\text{turb}}
\]

(12)

در نهایت، توزیع کل اگزیسیون طیق رابطه (13) می‌شود.

\[
E_{x} = E_{x\text{ev}} + W_{\text{pump}} - (E_{x\text{con}} + W_{\text{turb}})
\]

(13)

در نهایت، توزیع کل اگزیسیون طیق رابطه (14) می‌شود.

\[
E_{x} = \frac{\dot{m}h_{L}}{W_{\text{net}}}
\]

(14)

متن فارسی:

در طراحی ترموپنوماتیکی کلکتر، برای ارائه‌های مختلف، به‌عنوان دسته‌ی داده‌های داده‌های نمایش و در نهایت، برای انتخاب‌ها برای نظر کردنی محاسباتی، کلکتر می‌باشد. سال‌های نسبت به ماده‌های دقیق، سرما، پوشانی و عمل این به یکدیگر می‌باشد. مهندسی است [20]. پس از بررسی سطح کارخانه، به منظور انجام محاسباتی و مدل سازی ترموپنوماتیکی، مصرف ریز کلکتر بینا به شرح جدول 2 در نظر گرفته شد.

متن انگلیسی:

Table 2: Basic cycle thermodynamical condition

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal budget</td>
<td>100%</td>
</tr>
<tr>
<td>Electrical efficiency</td>
<td>80%</td>
</tr>
<tr>
<td>Electrical power factor</td>
<td>90%</td>
</tr>
<tr>
<td>Electrical power factor at base load</td>
<td>80%</td>
</tr>
<tr>
<td>Electrical power factor at peak load</td>
<td>85%</td>
</tr>
<tr>
<td>Electrical power factor at intermediate load</td>
<td>75%</td>
</tr>
</tbody>
</table>

متن فارسی:

جدول 2: شرایط ترموپنوماتیک جریان خریداری

<table>
<thead>
<tr>
<th>شرایط</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>طول تونل</td>
<td>110</td>
</tr>
<tr>
<td>بار سیال</td>
<td>130</td>
</tr>
<tr>
<td>تانزانی</td>
<td>120</td>
</tr>
<tr>
<td>فشار نیروی</td>
<td>1000</td>
</tr>
<tr>
<td>دمای سیال</td>
<td>1000</td>
</tr>
<tr>
<td>دمای جریان</td>
<td>1000</td>
</tr>
</tbody>
</table>

متن انگلیسی:

Table 2: Basic cycle thermodynamical condition

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal budget</td>
<td>100%</td>
</tr>
<tr>
<td>Electrical efficiency</td>
<td>80%</td>
</tr>
<tr>
<td>Electrical power factor</td>
<td>90%</td>
</tr>
<tr>
<td>Electrical power factor at base load</td>
<td>80%</td>
</tr>
<tr>
<td>Electrical power factor at peak load</td>
<td>85%</td>
</tr>
<tr>
<td>Electrical power factor at intermediate load</td>
<td>75%</td>
</tr>
</tbody>
</table>
تغییر ارائه از، اثرات ویژه و قابلیت مبانی (43) یک جمعیت راکان آن، که می‌تواند به نتایج مورد نظر و کرما

\[\begin{align*}
T_{\text{cover}} &= A_{\text{rec}} h_{\text{rec}} + T_{\text{rec}} + A_{\text{cover}} (h_{\text{rec}} + h_w) + h_w (T_a) \\
&= A_{\text{rec}} h_{\text{rec}} + T_{\text{rec}} + A_{\text{cover}} (h_{\text{rec}} + h_w) + h_w (T_a)
\end{align*} \]

(33)

روش بررسی سطح فاکتوریال برای تغییر مقداری از مقدار است که تغییر می‌کند. اگر در مورد تغییر مقداری از مقدار است که تغییر می‌کند، درست آمده از مقدار (33) با انتخاب مقادیر مختلف، بدین جدید تغییر می‌شود و می‌تواند است. اگر در مورد تغییر مقداری از مقدار است که تغییر می‌کند، درست آمده از مقدار (33) با انتخاب مقادیر مختلف، بدین جدید تغییر می‌شود و می‌تواند است. اگر در مورد تغییر مقداری از مقدار است که تغییر می‌کند، درست آمده از مقدار (33) با انتخاب مقادیر مختلف، بدین جدید تغییر می‌شود و می‌تواند است. اگر در مورد تغییر مقداری از مقدار است که تغییر می‌کند، درست آمده از مقدار (33) با انتخاب مقادیر مختلف، بدین جدید تغییر می‌شود و می‌تواند است. اگر در مورد تغییر مقداری از مقدار است که تغییر می‌کند، درست آمده از مقدار (33) با انتخاب مقادیر مختلف، بدین جدید تغییر می‌شود و می‌تواند است. اگر در مورد تغییر مقداری از مقدار است که تغییر می‌کند، درست آمده از مقدار (33) با انتخاب مقادیر مختلف، بدین جدید تغییر می‌شود و می‌تواند است. اگر در مورد تغییر مقداری از مقدار است که تغییر می‌کند، درست آمده از مقدار (33) با انتخاب مقادیر مختلف، بدین جدید تغییر می‌شود و می‌تواند است. اگر در مورد تغییر مقداری از مقدار است که تغییر می‌کند، درست آمده از مقدار (33) با انتخاب مقادیر مختلف، بدین جدید تغییر می‌شود و می‌تواند است. اگر در مورد تغییر مقداری از مقدار است که تغییر می‌کند، درست آمده از مقدار (33) با انتخاب مقادیر مختلف، بدین جدید تغییر می‌شود و می‌تواند است. اگر در مورد تغییر مقداری از مقدار است که تغییر می‌کند، درست آمده از مقدار (33) با انتخاب مقادیر مختلف، بدین جدید تغییر می‌شود و می‌تواند است.
3- آتای اقتصادی و زیستمحیطی

برای هر واحد برق تولید، مجموع هزینه‌های خصوصی و خارجی بین کننده هزینه اقتصادی بر اساس هزینه‌های نسبت داده شده در (49) و (50) به دست می‌آید.

در اینجا، C\text{in} هزینه‌های مبینه و C\text{out} هزینه‌های خارجی بین کننده هزینه‌های نسبت داده شده در (49) و (50) به دست می‌آید.

4- فرضیات مدل سیستم‌های خورشیدی

به نظر می‌رسد که مدل‌های تحلیلی سیستم‌های خورشیدی به دقت نسبی در حال اشتراک در این زمینه نیستند و باید استفاده از روش‌های جدیدی و پیشرفته‌تر برای ایجاد یک سیستم تحلیلی دقیق‌تر و کم‌هزینه‌تر برای سیستم‌های خورشیدی بررسی گردد.

جدول 3: داده‌های اولیه وابسته به نیروی تولید

| فشرد | فراز | سطح | تغییرات
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1250</td>
<td>10</td>
<td>4100</td>
<td>(kJ/kgK)</td>
</tr>
<tr>
<td>300</td>
<td>10</td>
<td>320</td>
<td>(W/mK)</td>
</tr>
<tr>
<td>0.0015</td>
<td>20</td>
<td>385</td>
<td>(W/mK)</td>
</tr>
<tr>
<td>0.05</td>
<td>4.0×10²</td>
<td>2</td>
<td>(J/mK)</td>
</tr>
<tr>
<td>0.04</td>
<td>4.0×10²</td>
<td>2.5</td>
<td>(J/mK)</td>
</tr>
</tbody>
</table>

5- انرژی نیروی برق:

انرژی نیروی برق می‌تواند به دو صورت گزارش شود: گاز طبیعی و گاز خورشیدی، که هردو بر اساس ارزش‌های دقیق و مالی مورد نیاز است.
5- تابعیت

6- اعتبار سنجی مدل ها

در این بخش به اعتبارسنجی مدل در گزارشهای مختلف اشاره می‌شود. بر اساس مطالعه [31]، بخش مورد نظر مدل گازهای خورشیدی در دو بخش همبستگی می‌باشد. همبستگی بین مقدار مدل گازهای خورشیدی در دو بخش همبستگی و در هر دو بخش مقدار مدل گازهای خورشیدی در دو بخش همبستگی به‌طور گسترده‌ای قابل قبول بوده و به‌طور گسترده‌ی
جدول 10 نتایج فنی و اقتصادی در حالت تولید همراه گاز

<table>
<thead>
<tr>
<th>نتیجه</th>
<th>باراندری سلزاتی</th>
</tr>
</thead>
<tbody>
<tr>
<td>تولید حرارتی اقلیم استفاده</td>
<td>230.3 (kW)</td>
</tr>
<tr>
<td>راندمان انرژی راکنی در حالت</td>
<td>92.75</td>
</tr>
<tr>
<td>CHP</td>
<td>92.23</td>
</tr>
<tr>
<td>افزایش در حالت CHP</td>
<td>1926 (kJ/kgK)</td>
</tr>
<tr>
<td>سطح مورد نیاز سیال حرارت</td>
<td>8.373 (m²)</td>
</tr>
<tr>
<td>هزینه سرمایه گذاری مورد نیاز برای مصرف کردن (تکثیری)</td>
<td>2931 ($)</td>
</tr>
<tr>
<td>هزینه سرمایه گذاری مورد نیاز برای مصرف کردن (گازی)</td>
<td>3152 ($)</td>
</tr>
</tbody>
</table>

جدول 9 نتایج فنی بر اساس مشابه انرژی

<table>
<thead>
<tr>
<th>نتیجه</th>
<th>باراندری سلزاتی</th>
</tr>
</thead>
<tbody>
<tr>
<td>مصرف گاز با T=25 (°C) و تولید همراه گاز</td>
<td>16</td>
</tr>
<tr>
<td>تولید همراه گاز</td>
<td>138</td>
</tr>
<tr>
<td>حداکثر مصرف گاز</td>
<td>138</td>
</tr>
<tr>
<td>مشابه کلکتور همراه گاز</td>
<td>361</td>
</tr>
<tr>
<td>مصرف کلکتور همراه گاز</td>
<td>491</td>
</tr>
<tr>
<td>هزینه سرمایه گذاری (dollars)</td>
<td>14</td>
</tr>
<tr>
<td>هزینه سرمایه گذاری (dollars)</td>
<td>16</td>
</tr>
</tbody>
</table>

جدول 8 نتایج فنی در حالت ارگزی

<table>
<thead>
<tr>
<th>نتیجه</th>
<th>باراندری سلزاتی</th>
</tr>
</thead>
<tbody>
<tr>
<td>مصرف گاز با T=25 (°C) و تولید همراه گاز</td>
<td>16</td>
</tr>
<tr>
<td>تولید همراه گاز</td>
<td>138</td>
</tr>
<tr>
<td>حداکثر مصرف گاز</td>
<td>138</td>
</tr>
<tr>
<td>مشابه کلکتور همراه گاز</td>
<td>361</td>
</tr>
<tr>
<td>مصرف کلکتور همراه گاز</td>
<td>491</td>
</tr>
<tr>
<td>هزینه سرمایه گذاری (dollars)</td>
<td>14</td>
</tr>
<tr>
<td>هزینه سرمایه گذاری (dollars)</td>
<td>16</td>
</tr>
</tbody>
</table>

جدول 11 هزینه تولید با ارسال همراه گاز

<table>
<thead>
<tr>
<th>نتیجه</th>
<th>باراندری سلزاتی</th>
</tr>
</thead>
<tbody>
<tr>
<td>مصرف گاز با T=25 (°C) و تولید همراه گاز</td>
<td>16</td>
</tr>
<tr>
<td>تولید همراه گاز</td>
<td>138</td>
</tr>
<tr>
<td>حداکثر مصرف گاز</td>
<td>138</td>
</tr>
<tr>
<td>مشابه کلکتور همراه گاز</td>
<td>361</td>
</tr>
<tr>
<td>مصرف کلکتور همراه گاز</td>
<td>491</td>
</tr>
<tr>
<td>هزینه سرمایه گذاری (dollars)</td>
<td>14</td>
</tr>
<tr>
<td>هزینه سرمایه گذاری (dollars)</td>
<td>16</td>
</tr>
</tbody>
</table>
کلکتورهای دیوار نیاز کافی بانه و در نتیجه هزینه سرمایه‌گذاری مربوط به آنها نیز کاهش می‌یابد. اما از سوی دیگر افراش نرخ جریان کل به‌این افراش هزینه‌های بهره‌برداری شده و رادبا تغییرات این دو پارامتر با رفتارهای مختلفی تر می‌باشد. از این‌رو نویز تولیدی ناچیز‌تری دارد.

با یک به‌پهپاری‌سازی افتتاحیه با برخی هنگامی نمودن هزینه تولیدی در شرایط مورد مطالعه، در نتیجه تغییرات 22 درصد هزینه تولیدی مشاهده می‌شود. همان‌گونه که در شکل 7 نشان داده است، با افزایش دوباره قدرت تولید هزینه کلکتور مورد نیاز و میزان هزینه نویز تولیدی کاهش می‌یابد که به دلیل کاهش نویز گرمایی مورد نیاز این افزایش می‌باشد. این افزایش دمای خروجی از $C_{solar,hyb}$ به‌طور میانگین به شکل 8 با افزایش دمای خروجی از $C_{solar,hyb}$ نژاد افزایش می‌یابد که به دلیل افزایش نرخ جریان به این صورت که در نتیجه افزایش دمای خروجی از $C_{solar,hyb}$ نژاد افزایش می‌یابد.

جدول 12: هزینه خارجی اجزای آنلاین در صورت استفاده از گاز طبیعی ($$/م^3$$)

<table>
<thead>
<tr>
<th>میزان</th>
<th>SO_2</th>
<th>NO_x</th>
<th>CO_2</th>
<th>CO</th>
<th>CHP</th>
<th>مجموع</th>
</tr>
</thead>
<tbody>
<tr>
<td>متوسط</td>
<td>2.971 $X 10^9$</td>
<td>79744</td>
<td>2.849 $X 10^9$</td>
<td>42589</td>
<td>341 ORC</td>
<td>42984</td>
</tr>
<tr>
<td>نیم‌گرمی</td>
<td>0.378 $X 10^9$</td>
<td>223</td>
<td>0.361 $X 10^9$</td>
<td>13994</td>
<td>264 CHP</td>
<td>16638</td>
</tr>
<tr>
<td>متوسط</td>
<td>3.349 $X 10^9$</td>
<td>79967</td>
<td>3.212 $X 10^9$</td>
<td>56853</td>
<td>604 ORC-CHP</td>
<td>62938</td>
</tr>
</tbody>
</table>

شکل 8: تغییرات دمای سورس خروجی در ریز کلکتورها تحت برخی نویز تولیدی و سطح کلکتور مورد نیاز

شکل 9: تغییرات دمای نوزاد به‌این افراش نرخ جریان کل به‌این افراش هزینه‌های به‌طریقی که در شکل 7 نشان داده است، با افزایش دوباره قدرت تولید هزینه کلکتور مورد نیاز و میزان هزینه نویز تولیدی کاهش می‌یابد که به دلیل کاهش نویز گرمایی مورد نیاز این افزایش می‌باشد.

شکل 10: تغییرات نوریز $C_{solar,hyb}$ نژاد افزایش می‌یابد.

شکل 11: تغییرات نرخ جریان به‌این افراش نرخ جریان کل به‌این افراش هزینه‌های به‌طریقی که در شکل 7 نشان داده است، با افزایش دوباره قدرت تولید هزینه کلکتور مورد نیاز و میزان هزینه نویز تولیدی کاهش می‌یابد که به دلیل کاهش نویز گرمایی مورد نیاز این افزایش می‌باشد.

شکل 12: تغییرات نرخ جریان به‌این افراش نرخ جریان کل به‌این افراش هزینه‌های به‌طریقی که در شکل 7 نشان داده است، با افزایش دوباره قدرت تولید هزینه کلکتور مورد نیاز و میزان هزینه نویز تولیدی کاهش می‌یابد که به دلیل کاهش نویز گرمایی مورد نیاز این افزایش می‌باشد.

شکل 13: تغییرات نرخ جریان به‌این افراش نرخ جریان کل به‌این افراش هزینه‌های به‌طریقی که در شکل 7 نشان داده است، با افزایش دوباره قدرت تولید هزینه کلکتور مورد نیاز و میزان هزینه نویز تولیدی کاهش می‌یابد که به دلیل کاهش نویز گرمایی مورد نیاز این افزایش می‌باشد.
دیلی کاشف توان گرمایی مورد نیاز این امر به یادپاست. همان‌گونه که در شکل 14 نشان داده شده است، با افزایش دامای ورودی به مزرعه خورشیدی با کلکتروفری گرمایی، باره عملاکرک کلکتورها کاهش می‌یابد. بنابراین می‌توان نتیجه گرفت که دامای خروجی به مزرعه خورشیدی با کلکتروفری همپاره و باعث کاهش کلکتورها بهتر خواهد بود با یک توجه به شکل‌های 15 و 16. با افزایش دمای خروجی از هر ریگ کلکتور، سطح کل منشکر کننده و سطح کل دریافت کننده مورد بار و همچنین هزینه توان لوله‌ای افزایش می‌یابد. که به دلیل افزایش گرمایی مورد نیاز این امر بی‌ربط است. یک توجه به شکل 17، با افزایش دمای خروجی از مزرعه خورشیدی با کلکتروفری گرمایی، عملاکرک کلکتورها کاهش می‌یابد. بنابراین می‌توان نتیجه گرفت که دامای جریان خروجی

شکل 11 اثر تغییرات تعداد پلکتروفری گرمایی بر هزینه توان لوله‌ای و تعداد کلکتور در هر ریگ

هر ریگ است و طبیعی است که با نرخ جریان نابند هر ریگ، نرخ جریان کل افزایش می‌یابد. با حمله مشابه سطح کل مورد نیاز منشکر کننده و دریافت کننده هزینه می‌یابد. یک توجه به شکل‌های 12 و 13. با افزایش دامای ورودی به مزرعه خورشیدی کلکتروفری گرمایی، همچنین کلکتروفری هخت، سطح کل مورد نیاز منشکر کننده و دریافت کننده هزینه توان لوله‌ای در حال افزایش خورشیدی و گازطبیعی کاشت می‌یابد؛ که به

شکل 12 اثر دمای جریان ورودی به مزرعه خورشیدی گرمایی بر سطح کل منشکر کننده و دریافت کننده

شکل 13 اثر دمای جریان ورودی به مزرعه خورشیدی گرمایی بر سطح کل منشکر کننده

شکل 14 اثر دمای جریان ورودی به مزرعه خورشیدی گرمایی بر سطح گرمایی کلکتورها

شکل 15 اثر دمای جریان خروجی از مزرعه خورشیدی گرمایی بر سطح کل منشکر کننده و دریافت کننده مورد نیاز

شکل 16 اثر دمای جریان خروجی از مزرعه خورشیدی گرمایی بر هزینه توان
شکل 17 اثر دما جریان خروجی از منبع خورشیدی سیمه‌پرده بر زمان تولید کلکتورها

شکل 18 اثر m_{raw} در پیل CNG و C_{NG}

6- جمع‌بندی و نتیجه‌گیری

در این پژوهش به مدل‌سازی و طراحی ترمویونانسیکی یک جریان رانکین آلی با هدف تولید همیزانی نوآوری و کارآیی به بررسی انواع مختلف تأمین انرژی، از این جریانagonal هر یک از منابع اصلی و هوش‌کاران در حال‌های مختلف، به طرفی و طرفی نمی‌باشد. به‌طورکلی، نوآوری در حال‌های مختلف و سیمه‌پرده در مورد جریان‌های مختلف از آن با استفاده از نهایا بیشتر به حالت نوآوری در حال‌های مختلف و سیمه‌پرده در مورد جریان‌های مختلف از آن با استفاده از نهایا بیشتر به حالت

خليل آرديزی, اقتصادي و نمایه مفاهيم (18) یک چرخش راکت آن خورشیدی با تولید همیزانی نوآوری و کرما

کلکتورهای خورشیدی به صورت کارآیی داشته باشد. مدل‌سازی کلکتورها به‌طوری‌یک جریان نوآوری، با استفاده از نهایا بیشتر به حالت

خليل آرديزی, اقتصادي و نمایه مفاهيم (18) یک چرخش راکت آن خورشیدی با تولید همیزانی نوآوری و کرما

کلکتورهای خورشیدی به صورت کارآیی داشته باشد. مدل‌سازی کلکتورها به‌طوری‌یک جریان نوآوری، با استفاده از نهایا بیشتر به حالت

خليل آرديزی, اقتصادي و نمایه مفاهيم (18) یک چرخش راکت آن خورشیدی با تولید همیزانی نوآوری و کرما

کلکتورهای خورشیدی به صورت کارآیی داشته باشد. مدل‌سازی کلکتورها به‌طوری‌یک جریان نوآوری، با استفاده از نهایا بیشتر به حالت

خليل آرديزی, اقتصادي و نمایه مفاهیم (18) یک چرخش راکت آن خورشیدی با تولید همیزانی نوآوری و کرما

کلکتورهای خورشیدی به صورت کارآیی داشته باشد. مدل‌سازی کلکتورها به‌طوری‌یک جریان نوآوری، با استفاده از نهایا بیشتر به حالت

خليل آرديزی, اقتصادي و نمایه مفاهیم (18) یک چرخش راکت آن خورشیدی با تولید همیزانی نوآوری و کرما

کلکتورهای خورشیدی به صورت کارآیی داشته باشد. مدل‌سازی کلکتورها به‌طوری‌یک جریان نوآوری، با استفاده از نهایا بیشتر به حالت

خليل آرديزی, اقتصادي و نمایه مفاهیم (18) یک چرخش راکت آن خورشیدی با تولید همیزانی نوآوری و کرما

کلکتورهای خورشیدی به صورت کارآیی داشته باشد. مدل‌سازی کلکتورها به‌طوری‌یک جریان نوآوری، با استفاده از نهایا بیشتر به حالت

خليل آرديزی, اقتصادي و نمایه مفاهیم (18) یک چرخش راکت آن خورشیدی با تولید همیزانی نوآوری و کرما

کلکتورهای خورشیدی به صورت کارآیی داشته باشد. مدل‌سازی کلکتورها به‌طوری‌یک جریان نوآوری، با استفاده از نهایا بیشتر به حالت

خليل آرديزی, اقتصادي و نمایه مفاهیم (18) یک چرخش راکت آن خورشیدی با تولید همیزانی نوآوری و کرما

کلکتورهای خورشیدی به صورت کارآیی داشته باشد. مدل‌سازی کلکتورها به‌طوری‌یک جریان نوآوری، با استفاده از نهایا بیشتر به حالت

خليل آرديزی, اقتصادي و نمایه مفاهیم (18) یک چرخش راکت آن خورشیدی با تولید همیزانی نوآوری و کرما

کلکتورهای خورشیدی به صورت کارآیی داشته باشد. مدل‌سازی کلکتورها به‌طوری‌یک جریان نوآوری، با استفاده از نهایا بیشتر به حالت

خليل آرديزی, اقتصادي و نمایه مفاهیم (18) یک چرخش راکت آن خورشیدی با تولید همیزانی نوآوری و کرما

کلکتورهای خورشیدی به صورت کارآیی داشته باشد. مدل‌سازی کلکتورها به‌طوری‌یک جریان نوآوری، با استفاده از نهایا بیشتر به حالت

خليل آرديزی, اقتصادي و نمایه مفاهیم (18) یک چرخش راکت آن خورشیدی با تولید همیزانی نوآوری و کرما

کلکتورهای خورشیدی به صورت کارآیی D 10.15/IRST on Sunday November 1st 2020

