Tech economic optimization of CCHP system with rely the time value of money, in payback period

Fateme Tavakoli Dastjerd 1, Mohammad Mustafa Ghanaoryan 2, Seyyed Ehsan Shabkib 3 *

1- Department of Mechanical Engineering, University of Sistan and Baluchestan, Zahedan, Iran
2- Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
3- Department of Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran

* P.O.B. 146, Qaen, Iran, shabkib@buqen.ac.ir

ABSTRACT

In this paper, optimization and techno-economic evaluation of a Combined Cooling, Heating and Power (CCHP) system for a hotel in Kerman has been investigated. The design parameters of system include capacity of gas engine(as prime mover), partial load (PL), thermal capacity of boiler, the cooling capacities of electric and absorption chillers that, by using energy, economic, and environment analysis and relative annual benefit (AF), as objective function, have been optimized. Then, for optimum results the payback period (PB) has been investigated by considering the time value of money and without it. Results show an increase in the number of prime movers, reduced annual benefit. Moreover, this process has reverse relation with classic payback period since choosing a 2550 kW gas engine, maximum relative annual benefit (AF) with value of 45.5×10(8)/year and minimum payback period (PB) of 6 years will be selected. Also, when the costs of energy increase and one prime mover (PM) is selected, the results of traditional and classical payback method are different as the time of payback period increases in classic method and decreases in discounted method.

Please cite this article using:
F. Tavakoli Dastjerd, M. M. Ghanaoryan, S. E. Shabkib, Tech economic optimization of CCHP system with rely the time value of money, in payback period, Modares Mechanical Engineering, Vol. 15, No. 5, pp. 245-254, 2015 (In Persian)
3- روش تعیین نظریه

存量 گروه کربنی از نظر مطلوب سیستم‌های ۲ تا ۵. مثلاً صنعتی، محیطی و برق نوازی و جریان‌های متوسط است. این سیستم، محیطی و برق نوازی و جریان‌های متوسط است. نهایتی، زنجیره‌ای و زنجیره‌ای و زنجیره‌ای و ...
2-3 آنالیز اقتصادی

آنالیز اقتصادی بر روی فرضیاتی مبنای مقايسه و تصمیم گیری و انتخاب از میان راهحل‌های برنامه‌ریزی مبتنی بر اقتصادی و تکنولوژیکی می‌باشد. همان‌طور که نشان داده شده در بخش پیشین اقتصادی، کلیه محاسبات به‌کار بردن گزینه‌های قابلیتی و تکنیکی، منجر به افزایش بهره وری و مصرف سرمایه شده است. در نتیجه، بستگی به انتخاب بجای این که تکنیکی انتخاب شده به این تکنیکی در این منطقه واقع می‌شود.

3-3 آنالیز زیست محیطی

آنالیز زیست محیطی با استفاده از مدل‌های محاسباتی در این منطقه به‌کار رفته بود. نتایج این مدل‌ها نشان داده بود که در این منطقه به حساب‌رسانی یکی از بازگشت‌های بین‌المللی و کلاسیک وارده‌است.

4-دوره بازگشت سرمایه

سرمایه‌داران سیستمی تولید همزمان همیشه می‌خواهند از دست زمان بالا رفتن سرمایه‌ها جلوگیری کنند و می‌توانند به سرمایه‌گذاری در پروژه‌هایی را دارند که از طرف دیگر بازار را داشته باشند ولی بهبود محاسبه دقیق آن نشان اتیم به جای این بود که بازار را بپذیرد. در این نقطه به محاسبه بسیار باربری‌ای و روش‌های کلی و کلاسیک برداشت می‌شود.

1-محاسبه دوره بازگشت به روش ستین

محاسبه دوره بازگشت سرمایه به روش ستین، یک روش تقریبی و سریع برای مقایسه اقتصادی پروژه ها است که سرمایه‌گذاران در جستجوی مدت
جدول 1: هزینه اولیه و تعمیر و تکمیل نیروگاه سیستم تولید همزمان [8] - [9]

<table>
<thead>
<tr>
<th>نیروگاه</th>
<th>هزینه اولیه و تجبیرهای</th>
<th>مولوتور احتراق داخلی گازوژ</th>
<th>پارامتر 1</th>
<th>پارامتر 2</th>
<th>پارامتر 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>$-13.87 \ln (E_{nom}) + 1727.1$</td>
<td>E_{nom}</td>
<td>$20H_0^{0.13}$</td>
<td>$540(C_{nom,ab})^{-0.128}$</td>
<td>$48.2(C_{nom,el})^{-0.07723} - 159.7$</td>
</tr>
<tr>
<td>M</td>
<td>$0.1606 \times E_{nom}^{0.2} (1 - 0.6875 \frac{k}{E_{nom}})$</td>
<td>0.0027</td>
<td>0.0038</td>
<td>0.0038</td>
<td></td>
</tr>
</tbody>
</table>

"به طوری که e_{nom} بهره‌برداری و نیروگاه C_{nom}، به نسبت به سیستم CCHP در زمان بالاتر در مورد پیروی از طرح هزینه، استفاده می‌نماید.

زمانی که سیستم، به برداشت توسط درآمد در سالهای سیستم جزین که، از رابطه (9) استفاده می‌کند [11].

$$P_B = \frac{P}{CF}$$

به طوری که P_B بهینه‌سازی نیروگاه و P می‌باشد. به طوری که در رابطه (10) به صورت زیر می‌شود.

$$PNW(y) - PWC(y) = 0$$

$$P = P_B$$

جدول 2: پارامترهای موجود در که پیدا شده در سایز سیستم سیستم‌های برق و درجه θ ضرایب و خاصیت‌های متغیرهای آن در مورد جدول 3 معرف می‌نماید.

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ</td>
<td>0.05</td>
</tr>
<tr>
<td>α</td>
<td>0.1</td>
</tr>
<tr>
<td>β</td>
<td>0.01</td>
</tr>
</tbody>
</table>

جدول 3: ضرایب و خاصیت‌های متغیرهای آن در مورد جدول 3 معرف می‌نماید.

<table>
<thead>
<tr>
<th>پارامتر طرحی</th>
<th>مقدار</th>
<th>میانگین</th>
<th>3%</th>
<th>10%</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>طرفدار حرکت اولیه</td>
<td>500</td>
<td>50</td>
<td>100</td>
<td>300</td>
<td>400</td>
</tr>
<tr>
<td>طرفدار حرکت اولیه</td>
<td>500</td>
<td>50</td>
<td>100</td>
<td>300</td>
<td>400</td>
</tr>
<tr>
<td>طرفدار حرکت اولیه</td>
<td>500</td>
<td>50</td>
<td>100</td>
<td>300</td>
<td>400</td>
</tr>
</tbody>
</table>

[3] Salvage Value (SV)
۴ انتخاب‌های مربوط به برآورده شدن شرایط بسیاری از این‌الاثر در مقایسه با بیش از ۱۰۰ مورد از این درصد کاهشی در قدرت خروجی در نظر گرفته شده است. ۷-

۱۰۰

۵۵%

از میان می‌بایست یک جزئی به‌عنوان نشان‌دهنده شده باشد. در صورت عدم قبلا داشت، چیزی از باید مورد توجه قرار گیرد.

شکل ۳ مراجعت از فراوانی به‌عنوان

شکل ۴ برابری می‌تواند بازه کالری ناشی از یک مورد از این درصد کاهشی در قدرت خروجی در نظر گرفته شده است.
با مقایسه نتایج جدول 4 و 5 مشاهده می‌شود، با افزایش مصرف مصرف اولیه، سود سالانه کاهش یافته و به دنبال آن دوره بارگذاری سرمایه باید روش کلاسیک افزایش می‌یابد. اما این نتایج سود سالانه کاهش نشان داده می‌کند که دوره بارگذاری سرمایه با بهره‌برداری از روش‌های جدید و بهینه‌سازی سیستم‌های تولید، می‌تواند بهبود بزرگی در سود سالانه ناشی پیدا کند. محبوب‌ترین روش بارگذاری مصرف اولیه، تاکنون مشاهده شده است.

جدول 5

<table>
<thead>
<tr>
<th>ریزپای</th>
<th>مقدار</th>
<th>مصرف اولیه</th>
<th>مصرف اولیه</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>8/3</td>
</tr>
<tr>
<td>4</td>
<td>105</td>
<td>47</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>104</td>
<td>47</td>
<td>14</td>
</tr>
</tbody>
</table>

سومین جدول

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>شرایط و مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>مصرف اولیه</td>
<td>100</td>
</tr>
<tr>
<td>مصرف اولیه (KW)</td>
<td>750</td>
</tr>
<tr>
<td>مصرف اولیه (kW)</td>
<td>582</td>
</tr>
<tr>
<td>مصرف اولیه (شکل)</td>
<td>481</td>
</tr>
<tr>
<td>مصرف اولیه (شکل)</td>
<td>177</td>
</tr>
<tr>
<td>مصرف اولیه (شکل)</td>
<td>406</td>
</tr>
</tbody>
</table>

البیران

در مورد کلیه افزایش در مصرف اولیه که در سالانه مشاهده می‌شود، تأکید بر افزایش سرمایه و کاهش مصرف اولیه می‌باشد. این نتایج نشان می‌دهد که در بازارکلاسیک، مصرف اولیه می‌تواند با بهبود در سود سالانه کاهش یابد.

شکل 5

اینگریس یک و گره‌های سیستم تولید و ایجاد تغییرات بهتر در حالت احتمالی است.
9- فهرست عالمی

