سید هادی حسینی ۱، کارن ابری نیا، قادر فرجی ۳

آرایه یک راه حل تحلیلی به روش کران بالا برای اکستروزون مکوس جدید

آزمایشگاه علی پژوهشی
مهندسی مکانیک مدرس
mme.modares.ac.ir

1- کارشناسی ارشد، مهندسی مکانیک، دانشگاه تهران، تهران
2- مهندسی مکانیک، دانشگاه تهران، تهران
3- استادیار، مهندسی مکانیک، دانشگاه تهران
ghfaraji@ut.ac.ir

*اطلاعات مقاله

نام و نام خانوادگی: مهندسی مکانیک
دریافت: ۱۳۸۳ مهر
ارائه نهایی: ۱۳۸۴ مرداد

abstract

در این مقاله یک راه حل تحلیلی کران بالا برای اکستروزون مکوس جدید کران بالا برای اکستروزون مکوس جدید ارائه شده است. این روش توسط یک روش تحلیلی با استفاده از روش تحلیلی کران بالا برای اکستروزون ناشناخته (1393) و با استفاده از روش تحلیلی کران بالا برای اکستروزون ناشناخته (1393) و با استفاده از روش تحلیلی کران بالا برای اکستروزون ناشناخته (1393) و با استفاده از روش تحلیلی کران بالا برای اکستروزون ناشناخته (1393) و با استفاده از روش تحلیلی کران بالا برای اکستروزون ناشناخته (1393) و با استفاده از روش تحلیلی کران بالا برای اکستروزون ناشناخته (1393) و با استفاده از روش تحلیلی کران بالا برای اکستروزون ناشناخته (1393) و با استفاده از روش تحلیلی کران بالا برای اکستروزون ناشناخته (1393) و با استفاده از روش تحلیلی کران بالا برای اکستروزون ناشناخته (1393) و با استفاده از روش تحلیلی کران بالا برای اکستروزون ناشناخته (1393) و با استفاده از روش تحلیلی کران بالا برای اکستروزون ناشناخته (1393) و با استفاده از روش تحلیلی کران بالا برای اکستروزون ناشناخته (1393) و با استفاده از روش تحلیلی کران بالا برای اکستروزون ناشناخته (1393) و با استفاده از روش تحلیلی کران بالا برای اکستروزون ناشناخته (1393) و با استفاده از روش تحلیلی کران بالا برای اکستروزون ناشناخته (1393) و با استفاده از روش تحلیلی کران بالا برای اکستروزون ناشناخته (1393) و با استفاده از روش تحلیلی کران بالا برای اکستروزون ناشناخته (1393) و با استفاده از روش تحلیلی کران بالا برای اکستروزون ناشناخته (1393) و با استفاده از روش تحلیلی کران بالا برای اکستروزون ناشناخته (1393) و با استفاده از روش تحلیلی کران بالا برای اکستروزون ناشناخته (1393) و با استفاده از روش تحلیلی کران بالا برای اکستروزون ناشناخته (1393) و با استفاده از روش تحلیلی کران بالا برای اکستروزون ناشناخته (1393) و با استفاده از روش تحلیلی کران بالا برای اکستروزون ناشناخته (1393) و با استفاده از روش تحلیلی کران بالا برای اکستروزون ناشناخته (1393) و با استفاده از روش تحلیلی کran بالa برای اکستروزون ناشناخته (1393) و با استفاده از روش تحلیلی کران بالa برای اکستروزون ناشناخته (1393) و با استفاده از روش تحلیلی کران بالa برای اکستروزون ناشناخته (1393) و با استفاده از روش تحلیلی کران بالa برای اکستروزون ناشناخته (1393) و با استفاده از روش T

Upper bound analyses of novel backward extrusion

Seyed Hadi Hosseini, Karen Abrinia, Ghader Faraji

1- Department of Mechanical Engineering, University of Tehran, Tehran, Iran
2- Department of Mechanical Engineering, University of Tehran, Tehran, Iran
3- Department of Mechanical Engineering, University of Tehran, Tehran, Iran
* P.O.B. 11155-4563 Tehran, Iran, ghfaraji@ut.ac.ir

Article Information

Original Research Paper
Received 25 July 2014
Accepted 26 September 2014
Available Online 26 October 2014

Keywords:
backward extrusion
finite element simulation

Abstract

In this paper, an upper bound analysis of novel backward extrusion was presented. Initially, deformation zone was divided in four separate regions and an admissible velocity field for each was suggested. Then, total power in this process was calculated for each region, therefore, extrusion force was obtained. Moreover, investigation of relevance of extrusion force and process powers (friction, deformation, velocity discontinuity) with process parameters revealed better understanding in load estimation and process efficiency in this method. Finite element analysis by DEFORM®3D was utilized for validation of upper bound analyses. Upper bound analysis showed increasing initial billet diameter enhances extrusion force by nonlinear relation. In addition, big billet size remodels novel backward extrusion to conventional backward extrusion and proves lower requirement extrusion load in novel backward extrusion in comparison with conventional backward extrusion. Moreover, increasing the first region’s thickness in this process diminishes extrusion force by exponential relation and no considerable change in extrusion force can been seen in a particular thickness dimension. Investigation of process parameters in power efficiency showed that increasing the extruded part’s diameter created a critical condition in process efficiency because of high friction power. But increasing the thickness enhances power efficiency. Finally, upper bound analysis results had good agreement with FEA.
بنابراین می‌توان گفت که مختصات نویسندگی نظری را بسته به نواحی مختلف و سطوح مختلف تعیین می‌کند.

2- تحلیل کران با ارزاسی توئری کران یا این میانی سرعت و سطح دچار تغییر در جریان نیروی دارند. این تغییرات به شکل دیگری از این سطح برای یک تغییر سرعت و سطح است. بنابراین، تغییرات هر دو پارامتر مربوط به سطح و سرعت تغییرات باعث شده است. بنابراین، تغییرات سطح و سرعت در کران با این تغییرات مربوط به سطح و سرعت و سطح و سرعت تعیین می‌شود.

به طور کلی، نسبت میانی سرعت و سطح در کران با این تغییرات مربوط به سطح و سرعت و سطح و سرعت تغییرات باعث شده است. بنابراین، تغییرات سطح و سرعت در کران با این تغییرات مربوط به سطح و سرعت و سطح و سرعت تعیین می‌شود.

3- تحلیل کران با ارزاسی توئری کران یا این میانی سرعت و سطح دچار تغییر در جریان نیروی دارند. این تغییرات به شکل دیگری از این سطح برای یک تغییر سرعت و سطح است. بنابراین، تغییرات هر دو پارامتر مربوط به سطح و سطح است. بنابراین، تغییرات سطح و سطح در کران با این تغییرات مربوط به سطح و سطح و سطح و سطح تغییرات باعث شده است. بنابراین، تغییرات سطح و سطح در کران با این تغییرات مربوط به سطح و سطح و سطح و سطح تعیین می‌شود.

به طور کلی، نسبت میانی سرعت و سطح در کران با این تغییرات مربوط به سطح و سطح است. بنابراین، تغییرات هر دو پارامتر مربوط به سطح و سطح است. بنابراین، تغییرات سطح و سطح در کران با این تغییرات مربوط به سطح و سطح و سطح و سطح تغییرات باعث شده است. بنابراین، تغییرات سطح و سطح در کران با این تغییرات مربوط به سطح و سطح و سطح و سطح تعیین می‌شود.

4- تحلیل کران با ارزاسی توئری کران یا این میانی سرعت و سطح دچار تغییر در جریان نیروی دارند. این تغییرات به شکل دیگری از این سطح برای یک تغییر سرعت و سطح است. بنابراین، تغییرات هر دو پارامتر مربوط به سطح و سطح است. بنابراین، تغییرات سطح و سطح در کران با این تغییرات مربوط به سطح و سطح و سطح و سطح تغییرات باعث شده است. بنابراین، تغییرات سطح و سطح در کران با این تغییرات مربوط به سطح و سطح و سطح و سطح تعیین می‌شود.

به طور کلی، نسبت میانی سرعت و سطح در کران با این تغییرات مربوط به سطح و سطح است. بنابراین، تغییرات هر دو پارامتر مربوط به سطح و سطح است. بنابراین، تغییرات سطح و سطح در کران با این تغییرات مربوط به سطح و سطح و سطح و سطح تغییرات باعث شده است. بنابراین، تغییرات سطح و سطح در کران با این تغییرات مربوط به سطح و سطح و سطح و سطح تعیین می‌شود.
\[
\begin{align*}
\frac{\partial V_r}{\partial r} &= \frac{V_r}{r} + \frac{V_r}{r} \\
\frac{\partial V_{\theta}}{\partial r} &= \frac{1}{r} \left(\frac{V_r}{\tan \alpha} + \frac{V_r}{\tan \alpha} \right) \\
\frac{\partial V_z}{\partial r} &= \frac{1}{2} \frac{R_z^2}{R(z)} \\
\frac{\partial V_z}{\partial z} &= -\frac{2}{R(z)} \\
A &= R_0 + R_1 \\tan \alpha, B = -\tan \alpha, \tan \alpha = \frac{R_0 - R_1}{R_1 - R_0} \\
V_{\theta} &= \frac{V_r R_0^2}{2 R(z) (A + B)} \\
V_z &= -\frac{R_z^2}{2 R(z)} \\
V_r &= C = \frac{V_r R_0^2}{2 R(z) (A + B)} \\
D &= -C \left(1 + \frac{R_1^2}{2 R_1} \right), R_1 = R_0 + R_1 \\
F_r &= \frac{W_{\text{tan}}}{V_0} \\
F_{\theta} &= \frac{W_{\text{tan}}}{V_0} \\
F_z &= \frac{W_{\text{tan}}}{V_0} \\
\end{align*}
\]
شیب‌سازی فرابندنهایی با تغییر شکل زیاد مانند سه‌سیم شست مجدداً خودکار این ترم‌فاز می‌باشد[13]. بنابراین منفی برای هر شیب‌سازی قطعه‌های مجزا مدل است. مقیاس قابل و سینیه متجه شدن لبه قطعه نیز به شیب‌سازی به‌صورت مدل‌های ماده با شیب مدل‌های جامعات قطعات از نمونه کامل به اندازه‌ی 0/36 اتصال بین این مدل مورد استفاده در این شیب‌سازی از چهار نوع و نابغه شکل خطی انتخاب شده است. شکل 3 نشان می‌دهد و تغییر شکل قطعه‌ها در طول فرابند مکوس جدید نشان می‌دهد. همچنین ساختمان قابل صلب با قطعه کامل 10 mm/min مقایسه و فرابند اکسترور با سرعت مناسب محاسبه انجام شده است. برای تعیین نتایج برنامه‌ریزی انجام‌های اجرای محصول همان طور که در شکل 4 مشاهده می‌شود، یک محاسبه‌ی مدل به شکل 4 نشان می‌دهد. قابل سنجش به‌طور کلی، این شکل 5 دستگاه به طور کلی انجام‌های آزمایش و نمونه نشان می‌دهد. به‌طور کلی، این 30 انجام شده و همچنین روانکاری مناسب و سرعت با رابطه‌ی بین ثابت است. بنکی‌ها شدن و نرخ کرنش را به حداقل رساند و نتیجه‌ی نمونه بی‌فروشی شکل جامعی حاصل از تست شار بر صورت شکل 6 نشان می‌دهد. نامی در ترتیب راهنمای هولونیک برای آزمایش‌های خاص تجربه کریز 23 mm با نرخ کرنش 15 mm/min انجام شده است. این کرنش 0.0001 در ثانیه انجام شده است.

$$\sigma = 111.14 \times 10^{-4}$$

4- نتایج و جستجو

برای انجام تحلیل کران بالا نتایج این تحلیل با تغییر منفی‌های هندسی و فراوری بررسی می‌شود. یک مدل منفی تغییر کرنش و نرخ سرعت و نرخ اضافه‌ی ساختار به تکیف راه‌های خواهد داشت.

شکل 7 نشان می‌دهد شیب‌سازی انیلیه ریت نمونه‌های مکوس جدید با استفاده از شیب‌سازی اجراهای جدید. شکل 3 نشان می‌دهد شیب‌سازی انیلیه ریت نمونه‌های مکوس جدید با استفاده از شیب‌سازی اجراهای جدید.

شکل 4 نشان می‌دهد شیب‌سازی انیلیه ریت نمونه‌های مکوس جدید با استفاده از شیب‌سازی اجراهای جدید.
در نتیجه باید حذف یا بهبود آن در ترظیف پرس، کورس آن را ترمیم یا دیگر نسبی دارد. شکل 8 نایب شاخص قطعه کار اکسترون نشان دهنده شاخص قطعه کار اکسترون با ضرایب اصطکاک را نشان می‌دهد.

شکل 9 تاثیر ضخامت نسبی اولیه روی بار اکسترون با ضرایب اصطکاک

شکل 7 تاثیر شاخص شیمیایی روی بار اکسترون با ضرایب اصطکاک

در نتیجه باید حذف یا بهبود آن در ترظیف پرس، کورس آن را ترمیم یا دیگر نسبی دارد. شکل 8 نایب شاخص قطعه کار اکسترون نشان دهنده شاخص قطعه کار اکسترون با ضرایب اصطکاک را نشان می‌دهد.

شکل 9 تاثیر ضخامت نسبی اولیه روی بار اکسترون با ضرایب اصطکاک

شکل 7 تاثیر شاخص شیمیایی روی بار اکسترون با ضرایب اصطکاک

شکل 8 نایب شاخص قطعه کار اکسترون نشان دهنده شاخص قطعه کار اکسترون با ضرایب اصطکاک را نشان می‌دهد.

شکل 12 اثر ضخامت دیورتیق قطعه کار اکسترون روی هوض‌دادن نشان می‌دهد. باید حذف یا بهبود آن در ترظیف پرس، کورس آن را ترمیم یا دیگر نسبی دارد.

شکل 13 تاثیر شاخص قطعه کار اکسترون نشان دهنده شاخص قطعه کار اکسترون با ضرایب اصطکاک مختلط.
جدول ۱ مقایسه نتایج تحلیل کران بالا و تناگ حاصل از تحلیل اجزای محدود برای آکسترورون مکوس جدید

<table>
<thead>
<tr>
<th>شماره</th>
<th>R_a (mm)</th>
<th>R_b (mm)</th>
<th>t_a (mm)</th>
<th>t_b (mm)</th>
<th>H_0 (mm)</th>
<th>شیب (m)</th>
<th>شیب (جرم) (m)</th>
<th>شیب (جرم) (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱۲۵ ۳۳</td>
<td>۳ ۲</td>
<td>۶۰ ۰۱</td>
<td>۴۳۹</td>
<td></td>
<td>۳۲۴</td>
<td>۳۶۱</td>
<td></td>
</tr>
<tr>
<td>۲</td>
<td>۱۲۵ ۳۳</td>
<td>۳ ۲</td>
<td>۶۰ ۰۲</td>
<td>۴۰۶۶</td>
<td>۵۶۰۶</td>
<td>۴۵۶۶</td>
<td>۴۲۴۶</td>
<td></td>
</tr>
<tr>
<td>۳</td>
<td>۱۲۵ ۳۳</td>
<td>۳ ۲</td>
<td>۶۰ ۰۴</td>
<td>۵۶۶۶</td>
<td></td>
<td>۶۱۹۳</td>
<td>۵۹۳۳</td>
<td></td>
</tr>
<tr>
<td>۴</td>
<td>۲۶ ۳۳</td>
<td>۳ ۲</td>
<td>۶۰ ۰۱</td>
<td>۷۸۱۲</td>
<td></td>
<td>۹۳۳۳</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۵</td>
<td>۱۲۵ ۳۳</td>
<td>۴ ۳</td>
<td>۶۰ ۰۴</td>
<td>۳۰۵۳</td>
<td></td>
<td>۳۳۸۳</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۶</td>
<td>۱۲۵ ۳۳</td>
<td>۳ ۲</td>
<td>۶۰ ۰۱</td>
<td>۴۲۸۴</td>
<td></td>
<td>۴۶۲۳</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۷</td>
<td>۱۲۵ ۳۳</td>
<td>۳ ۲</td>
<td>۶۰ ۰۱</td>
<td>۲۴</td>
<td></td>
<td>۳۱۵۳</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۸</td>
<td>۱۲۵ ۳۳</td>
<td>۳ ۲</td>
<td>۶۰ ۰۴</td>
<td>۲۶۱۵</td>
<td></td>
<td>۲۹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۹</td>
<td>۱۰ ۳۳</td>
<td>۳ ۲</td>
<td>۶۰ ۰۱</td>
<td>۲۱۱۶</td>
<td></td>
<td>۲۲۱۴</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

هرمان طور که مشاهده می‌شود با افزایش شعاع قطعه کران هر ۴۴mm مقدار جریان در هر اجزای شعاع قطعه کران بالا و اجزای شعاع قطعه کران بالا مقدار جریان در هر اجزای شعاع قطعه کران بالا و اجزای شعاع قطعه کران بالا مقدار جریان در هر اجزای شعاع قطعه کران بالا و اجزای شعاع قطعه کران بالا مقدار جریان در هر اجزای شعاع قطعه کران بالا و اجزای شعاع قطعه کران بالا مقدار جریان در هر اجزای شعاع قطعه کران بالا و اجزای شعاع قطعه کران بالا مقدار جریان در هر اجزای شعاع قطعه کران بالا و اجزای شعاع قطعه کران بالا مقدار جریان در هر اجزای شعاع قطعه کران بالا و اجزای شعاع قطعه کران بالا مقدار جریان در هر اجزای شعاع قطعه کران بالا و اجزای شعاع قطعه کران بالا مقدار جریان در هر اجزای شعاع قطعه کران بالا و اجزای شعاع قطعه کران بالا مقدار جریان در هر اجزای شعاع قطعه کران بالا و اجزای شعاع قطعه کران بالا مقدار جریان در هر اجزای شعاع قطعه کران بالا و اجزای شعاع قطعه کران بالا مقدار جریان در هر اجزای شعاع قطعه کران بالا و اجزای شعاع قطعه کران بالا مقدار جریان در هر اجزای شعاع قطعه کران بالا و اجزای شعاع قطعه کران بالا مقدار جریان در هر اجزای شعاع قطعه کران بالا و اجزای شعاع قطعه کران بالا مقدار جریان در هر اجزای شعاع قطعه کران بالا و اجزای شعاع قطعه کران بالا مقدار جریان در هر اجزای شعاع قطعه کران بالا و اجزای شعاع قطعه کران بالا مقدار جریان در هر اجزای شعاع قطعه کران بالا و اجزای شعاع قطعه کران بالا مقدار جریان در هر اجزای شعاع قطعه کران بالا و اجزای شعاع قطعه کران بالا مقدار جریان در هر اجزای شعاع قطعه کران بالا و اجزای شعاع قطعه کران بالا مقدار جریان در هر اجزای شعاع قطعه کران بالا و اجزای شعاع قطعه کران بالا مقدار جریان در هر اجزای شعاع قطعه کران بالا و اجزای شعاع قطعه کران بالا مقدار جریان در هر اجزای شعاع قطعه کران بالا و اجزای شعاع قطعه کران بالا مقدار جریان در هر اجزای شعاع قطعه کران بالا و اجزای شعاع قطعه کران بالا مقدار جریان در هر اجزای شعاع قطعه کران بالا و اجزای شعاع قطعه کران بالا مقدار جریان در هر اجزای شعاع قطعه کران بالا و اجزای شعاع قطعه کران بالا مقدار جریان در هر اجزای شعاع قطعه کران بالا و اجزای شعاع قطعه کران بالا مقدار جریان در هر اجزای شعاع قطعه کران بالا و اجزای شعاع قطعه کران بالا مقدار جریان در هر اجزای شعاع قطعه کران بالا و اجزای شعاع قطعه کران بالا مقدار جریان در هر اجزای شعاع قطعه کران بالا و اجزای شعاع قطعه کران بالا مقدار جریان در هر اجزای شعاع قطعه کران بالا و اجزای شعاع قطعه کران بالا مقدار جریان در هر اجزای شعاع قطعه کران بالا و اجزای شعاع قطعه کران بالا مقدار جریان در هر اجزای شعاع قطعه کران بالا و اجزای شعاع قطعه کران بالا مقدار جریان در هر اجزای شعاع قطعه کران بالا و اجزای شعاع قطعه کران بالا مقدار جریان در هر اجزای شعاع قطعه کران بالا و اجزای شعاع قطعه کران بالا مقدار جریان در هر اجزای شعاع قطعه کران بالا و اجزای شعاع قطعه کران بالا مقدار جریان در هر اجزای شعاع قطعه کران بالا و اجزای شعاع قطعه کران بالا مقدار جریان در هر اجزای شعاع قطعه کران بالا و اجزای شعاع قطعه کران بالا مقدار جریان در هر اجزای شعاع قطعه کران بالا و اجزای شعاع قطعه کران بالا مقدار جریان در هر اجزای شعاع قطعه کران بالا و اجزای شعاع قطعه کران بالا مقدار جریان در هر اجزای شعاع قطعه کران بالا و اجزای شعاع قطعه کران بالا مقدار جریان در هر اجزای شعاع قطعه کران بالا و اجزای شعاع قطعه کران بالا مقدار جریان در هر اجزای شعاع قطعه کران بالا و اجزای شعاع قطعه کران بالا می‌باشد.

شكل ۲۴ نتایج تحلیل مقایسه حاصل از تحلیل اجزای محدود و تحلیل حاصل از تحلیل اجزای محدود برای آکسترورون مکوس جدید
شکل 5 - نمودار یالی - اجزای حجمی

شکل 6 - نمودار یالی - اجزای حجمی

شکل 7 - نمودار یالی - اجزای حجمی

شکل 8 - نمودار یالی - اجزای حجمی

شکل 9 - نمودار یالی - اجزای حجمی

شکل 10 - نمودار یالی - اجزای حجمی

شکل 11 - نمودار یالی - اجزای حجمی

شکل 12 - نمودار یالی - اجزای حجمی

شکل 13 - نمودار یالی - اجزای حجمی

شکل 14 - نمودار یالی - اجزای حجمی

شکل 15 - نمودار یالی - اجزای حجمی

شکل 16 - نمودار یالی - اجزای حجمی

شکل 17 - نمودار یالی - اجزای حجمی

شکل 18 - نمودار یالی - اجزای حجمی

شکل 19 - نمودار یالی - اجزای حجمی

شکل 20 - نمودار یالی - اجزای حجمی

شکل 21 - نمودار یالی - اجزای حجمی

شکل 22 - نمودار یالی - اجزای حجمی

شکل 23 - نمودار یالی - اجزای حجمی

شکل 24 - نمودار یالی - اجزای حجمی

شکل 25 - نمودار یالی - اجزای حجمی

شکل 26 - نمودار یالی - اجزای حجمی

شکل 27 - نمودار یالی - اجزای حجمی

شکل 28 - نمودار یالی - اجزای حجمی

شکل 29 - نمودار یالی - اجزای حجمی

شکل 30 - نمودار یالی - اجزای حجمی

شکل 31 - نمودار یالی - اجزای حجمی

شکل 32 - نمودار یالی - اجزای حجمی

شکل 33 - نمودار یالی - اجزای حجمی

شکل 34 - نمودار یالی - اجزای حجمی

شکل 35 - نمودار یالی - اجزای حجمی

شکل 36 - نمودار یالی - اجزای حجمی

شکل 37 - نمودار یالی - اجزای حجمی

شکل 38 - نمودار یالی - اجزای حجمی

شکل 39 - نمودار یالی - اجزای حجمی

شکل 40 - نمودار یالی - اجزای حجمی

شکل 41 - نمودار یالی - اجزای حجمی

شکل 42 - نمودار یالی - اجزای حجمی

شکل 43 - نمودار یالی - اجزای حجمی

شکل 44 - نمودار یالی - اجزای حجمی

شکل 45 - نمودار یالی - اجزای حجمی

شکل 46 - نمودار یالی - اجزای حجمی

شکل 47 - نمودار یالی - اجزای حجمی

شکل 48 - نمودار یالی - اجزای حجمی

شکل 49 - نمودار یالی - اجزای حجمی

شکل 50 - نمودار یالی - اجزای حجمی

