Abstract: (6651 Views)
In the present study, the effect of intra-pore turbulence within porous burnershas been investigated on combustion of methane/air mixture in such burners. A model is adapted to the porous structure to models turbulence flow. The GRI 3.0 chemical reaction mechanism is utilized for the combustion of methane/air mixture and radiative part of the solid phase energy equation is obtained using the discrete ordinate method. The numerical results show that the gas temperature obtained from turbulence model stays below the corresponding laminar model temperature all over the combustion region, and the flame thickness becomes wider in turbulence model. Although the CO emission are insensitive to laminar or turbulence model, the burning speed and NO emission predictions are found to be significantly improved when the effects of turbulence are taken into account.
Article Type:
Research Article |
Subject:
Combustion|Porous Media Received: 2013/05/15 | Accepted: 2013/06/25 | Published: 2013/12/21