Utilizing the extended finite element method for determining crack stress intensity factors and higher order terms coefficients

Ahmad Ghasemi Ghalehban1, Saeed Salavati

Department of Mechanical Engineering, Semnan University, Semnan, Iran.

* P.O.B. 351319111 Semnan, Iran, ghasemi@semnan.ac.ir

Abstract

In the present study, in order to evaluate the elastic displacement field and subsequently the fracture parameters within the isotropic homogeneous elastic solids with the edge or interior cracks, the extended finite element method with level set technique was used to avoid the disadvantages associated with the standard finite element method. An over-deterministic least squares method was utilized to determine the crack stress intensity factors as well as the coefficients of the higher order terms in the Williams' asymptotic series solution for structures containing crack in various modes of failure by fitting the series solution of displacement fields around the crack tip to a large number of nodal displacements obtained from the extended finite element method. For validating the results, several cracked specimens subjected to pure mode I, pure mode II, and mixed modes I/II loading were performed. Comparison with results available from the literature obtained by other formulations reveals the efficiency and simplicity of the proposed method, and demonstrate the capability of it accurately capture the crack stress intensity factors and the coefficients of higher order terms.

1 Extended Finite Element Method (XFEM)
2 Singular elements
3 Enrichment functions
10-Interaction Integral
11-Finite element over deterministic method
12-Heaviside function
13-Singular function

...
برای ثبت میانگین سطح ترک و جهیه ترک به‌ترتیب از دو مجموعه ترک مدل (7) و (8) می‌باشد. استفاده می‌شود که مقادیر تخمینی این تابع ترک به‌ترتیب برای بردار و صفر است (22). مطلوب شکل‌ها، به‌کمک علائم تابع ترک را در ارتباط با گردهای مختلف یک تابع چند متغیره ای است. به‌طوری‌که برابر ترک در آن باشد، در این صورت تابع ترک (x) به صورت رابطه (1) می‌باشد.

\[\phi(x) = \sum_{i=1}^{n} |x_i - x_{i-1}| \text{sign} (n(x - x_{i-1})) \]

(1)

در این صورت میانگین جهیزه‌ای از تابع ترک به‌کمک تابع نسبت یک تابع میانگین سطح ترک در این صورت به صورت رابطه (2) می‌باشد.

\[\theta = \tan (\phi(x)/\psi) \]

(2)

به‌طوری‌که برابر ترک در این صورت به صورت میانگین سطح ترک در این صورت به صورت رابطه (3) می‌باشد.

\[r = \sqrt{\psi^2 + \theta^2} \]

(3)

برای ثبت میانگین سطح ترک و جهیه ترک به‌ترتیب از دو مجموعه ترک مدل (7) و (8) می‌باشد. استفاده می‌شود که مقادیر تخمینی این تابع ترک به‌ترتیب برای بردار و صفر است (22). مطلوب شکل‌ها، به‌کمک علائم تابع ترک را در ارتباط با گردهای مختلف یک تابع چند متغیره ای است. به‌طوری‌که برابر ترک در آن باشد، در این صورت تابع ترک (x) به صورت رابطه (1) می‌باشد.

\[\phi(x) = \sum_{i=1}^{n} |x_i - x_{i-1}| \text{sign} (n(x - x_{i-1})) \]

(1)

در این صورت میانگین جهیزه‌ای از تابع ترک به‌کمک تابع نسبت یک تابع میانگین سطح ترک در این صورت به صورت رابطه (2) می‌باشد.

\[\theta = \tan (\phi(x)/\psi) \]

(2)

به‌طوری‌که برابر ترک در این صورت به صورت میانگین سطح ترک در این صورت به صورت رابطه (3) می‌باشد.

\[r = \sqrt{\psi^2 + \theta^2} \]

(3)

برای ثبت میانگین سطح ترک و جهیه ترک به‌ترتیب از دو مجموعه ترک مدل (7) و (8) می‌باشد. استفاده می‌شود که مقادیر تخمینی این تابع ترک به‌ترتیب برای بردار و صفر است (22). مطلوب شکل‌ها، به‌کمک علائم تابع ترک را در ارتباط با گردهای مختلف یک تابع چند متغیره ای است. به‌طوری‌که برابر ترک در آن باشد، در این صورت تابع ترک (x) به صورت رابطه (1) می‌باشد.

\[\phi(x) = \sum_{i=1}^{n} |x_i - x_{i-1}| \text{sign} (n(x - x_{i-1})) \]

(1)

در این صورت میانگین جهیزه‌ای از تابع ترک به‌کمک تابع نسبت یک تابع میانگین سطح ترک در این صورت به صورت رابطه (2) می‌باشد.

\[\theta = \tan (\phi(x)/\psi) \]

(2)

به‌طوری‌که برابر ترک در این صورت به صورت میانگین سطح ترک در این صورت به صورت رابطه (3) می‌باشد.

\[r = \sqrt{\psi^2 + \theta^2} \]

(3)
\[
\begin{align*}
\mu &= E/(1 + \nu) \quad (25) \\
\kappa &= \left\{ \begin{array}{l}
3 - 4\nu \quad \text{نش صفحه‌ی } \nu
\\
(3 - 2\nu)/(1 + \nu)
\end{array} \right. \quad (26)
\end{align*}
\]

که در این شکل، مقدار کولوسویس (\(\kappa \)) در صفحه‌ی
\(\nu \) مشخص شده است.

\[
\begin{align*}
\mathbf{g}_B &= \mathbf{u}_B - \mathbf{u}_0 \\
\mathbf{g}_D &= \mathbf{u}_D - \mathbf{u}_0 \\
\mathbf{g}_R &= \mathbf{u}_R - \mathbf{u}_0 \\
\end{align*}
\]

3- مکانیک نرم شدت نش در تحلیل مشابه‌کننده، شکل مواد نرم و درد ترد تعیین دقت ضریب نرم شدت

\[
\psi = \sqrt{\frac{K}{\pi}} \quad (27)
\]

در این روابط، \(K \) به مقدار نرم شدگی در صفحه‌ی \(\nu \) و \(\psi \) به ضریب نرم شدت به
در نظر گرفته شده است.

\[
egin{align*}
\mathbf{u}_B &= -\frac{1}{2\mu} \mathbf{B} \cdot \mathbf{r} \sin \theta \quad \text{که در این شکل، مقدار} \kappa \text{ در صفحه‌ی} \nu \text{ مشخص شده است.}
\\
\mathbf{u}_D &= -\frac{1}{2\mu} \mathbf{B} \cdot \mathbf{r} \cos \theta \quad (28)
\end{align*}
\]

\[
\begin{align*}
\mathbf{g}_B &= \mathbf{u}_B - \mathbf{u}_0 \\
\mathbf{g}_D &= \mathbf{u}_D - \mathbf{u}_0 \\
\mathbf{g}_R &= \mathbf{u}_R - \mathbf{u}_0 \\
\end{align*}
\]

4- روشهای اجزاء محدود توسعه‌ی 6

در روشهای اجزاء محدود توسعه‌ی با استفاده از تعداد زیادی داده در

\[
\mathbf{K}_{ij} = \frac{K_i}{\sqrt{2\pi}} f_i^j(\theta) + \frac{K_j}{\sqrt{2\pi}} f_j^i(\theta) + T \delta_i^j \delta_1 + O(r^{1/2})
\]

\[
\begin{align*}
\psi &= \sqrt{\frac{K}{\pi}} \quad (27)
\end{align*}
\]

به همراه با استفاده از توسعه‌ی هDocument is in Farsi
شده توسط از روش‌های محاسباتی و شبیه‌سازی در نشان‌دهنده کنترلی که در ادامه راه‌های پیشنهادی را که در این پژوهش نهایتی به شکل زیر مشخص شده است.

\[
\begin{bmatrix}
\mathbf{f}_1(r_1, \theta_1) & \mathbf{f}_2(r_1, \theta_2) & \cdots & \mathbf{f}_m(r_1, \theta_m) \\
\mathbf{f}_1(r_2, \theta_1) & \mathbf{f}_2(r_2, \theta_2) & \cdots & \mathbf{f}_m(r_2, \theta_m) \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{f}_1(r_n, \theta_1) & \mathbf{f}_2(r_n, \theta_2) & \cdots & \mathbf{f}_m(r_n, \theta_m)
\end{bmatrix}
\]

\[
[C] = \begin{bmatrix}
\mathbf{f}_1(r_1, \theta_1) & \mathbf{f}_2(r_1, \theta_2) & \cdots & \mathbf{f}_m(r_1, \theta_m) \\
\mathbf{f}_1(r_2, \theta_1) & \mathbf{f}_2(r_2, \theta_2) & \cdots & \mathbf{f}_m(r_2, \theta_m) \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{f}_1(r_n, \theta_1) & \mathbf{f}_2(r_n, \theta_2) & \cdots & \mathbf{f}_m(r_n, \theta_m)
\end{bmatrix}
\]

(34)

\[
K_i = \sqrt{2 \pi} A_i
\]

(40)

\[
K_{II} = -\sqrt{2 \pi} b_i
\]

(41)

\[
T = 4 A
\]

(42)

مطالعات اخیر نشان می‌دهد ترک‌های مران بالاتر غیر صفر در سطح ویلایانه در اثر نشان دقیق زمین‌شناسی به‌منظور نشان‌دهنده ترک علمی در پایه‌های تکمیلی و ضریب متابولیک و بیابانی اندازه‌گیری شده‌اند. بنابراین روش‌های محاسباتی و شبیه‌سازی در این پژوهش به‌منظور دادن مشخصات نشان‌دهنده نیازمندی به شکل زیر استفاده شده است.

\[
\begin{bmatrix}
\mathbf{a} \\
\mathbf{b} \\
\mathbf{c}
\end{bmatrix} = \begin{bmatrix}
\mathbf{u} \\
\mathbf{v} \\
\mathbf{w}
\end{bmatrix}
\]

(35)

\[
(x) = (C^T C)^{-1} C^T (u)
\]

(36)

در روش اجرای حساب مستقیم نشان این نتایج را که در ادامه راه‌های پیشنهادی را که در این پژوهش نهایتی به شکل زیر مشخص شده است.

\[
\begin{bmatrix}
\mathbf{a} \\
\mathbf{b} \\
\mathbf{c}
\end{bmatrix} = \begin{bmatrix}
\mathbf{u} \\
\mathbf{v} \\
\mathbf{w}
\end{bmatrix}
\]

(37)

\[
\begin{bmatrix}
\mathbf{a} \\
\mathbf{b} \\
\mathbf{c}
\end{bmatrix} = \begin{bmatrix}
\mathbf{u} \\
\mathbf{v} \\
\mathbf{w}
\end{bmatrix}
\]

(38)

\[
K_i = \sqrt{2 \pi} A_i
\]

(40)

\[
K_{II} = -\sqrt{2 \pi} b_i
\]

(41)

\[
T = 4 A
\]

(42)
مسایل پیچیده شکل (b) از استفاده از روش اجزای هشدار و پلیک ۳۷ برای معادلات تغییر می‌تواند با ماکسیموم‌بندی کمک کند.

1. افزایش کاربردیت در یک حالت

2. دقت و قدرت را در یک حالت

3. دقت و قدرت را در یک حالت

4. دقت و قدرت را در یک حالت

5. دقت و قدرت را در یک حالت

6. دقت و قدرت را در یک حالت

7. دقت و قدرت را در یک حالت

8. دقت و قدرت را در یک حالت

9. دقت و قدرت را در یک حالت

10. دقت و قدرت را در یک حالت

11. دقت و قدرت را در یک حالت

12. دقت و قدرت را در یک حالت

13. دقت و قدرت را در یک حالت

14. دقت و قدرت را در یک حالت

15. دقت و قدرت را در یک حالت

16. دقت و قدرت را در یک حالت

17. دقت و قدرت را در یک حالت

18. دقت و قدرت را در یک حالت

19. دقت و قدرت را در یک حالت

20. دقت و قدرت را در یک حالت

21. دقت و قدرت را در یک حالت

22. دقت و قدرت را در یک حالت

23. دقت و قدرت را در یک حالت

24. دقت و قدرت را در یک حالت

25. دقت و قدرت را در یک حالت

26. دقت و قدرت را در یک حالت

27. دقت و قدرت را در یک حالت

28. دقت و قدرت را در یک حالت

29. دقت و قدرت را در یک حالت

30. دقت و قدرت را در یک حالت

31. دقت و قدرت را در یک حالت

32. دقت و قدرت را در یک حالت

33. دقت و قدرت را در یک حالت

34. دقت و قدرت را در یک حالت

35. دقت و قدرت را در یک حالت

36. دقت و قدرت را در یک حالت

37. دقت و قدرت را در یک حالت

38. دقت و قدرت را در یک حالت

39. دقت و قدرت را در یک حالت

40. دقت و قدرت را در یک حالت

41. دقت و قدرت را در یک حالت

42. دقت و قدرت را در یک حالت

43. دقت و قدرت را در یک حالت

44. دقت و قدرت را در یک حالت

45. دقت و قدرت را در یک حالت

46. دقت و قدرت را در یک حالت

47. دقت و قدرت را در یک حالت

48. دقت و قدرت را در یک حالت

49. دقت و قدرت را در یک حالت

50. دقت و قدرت را در یک حالت

51. دقت و قدرت را در یک حالت

52. دقت و قدرت را در یک حالت

53. دقت و قدرت را در یک حالت

54. دقت و قدرت را در یک حالت

55. دقت و قدرت را در یک حالت

56. دقت و قدرت را در یک حالت

57. دقت و قدرت را در یک حالت

58. دقت و قدرت را در یک حالت

59. دقت و قدرت را در یک حالت

60. دقت و قدرت را در یک حالت

61. دقت و قدرت را در یک حالت

62. دقت و قدرت را در یک حالت

63. دقت و قدرت را در یک حالت

64. دقت و قدرت را در یک حالت

65. دقت و قدرت را در یک حالت

66. دقت و قدرت را در یک حالت

67. دقت و قدرت را در یک حالت

68. دقت و قدرت را در یک حالت

69. دقت و قدرت را در یک حالت

70. دقت و قدرت را در یک حالت

71. دقت و قدرت را در یک حالت

72. دقت و قدرت را در یک حالت

73. دقت و قدرت را در یک حالت

74. دقت و قدرت را در یک حالت

75. دقت و قدرت را در یک حالت

76. دقت و قدرت را در یک حالت

77. دقت و قدرت را در یک حالت

78. دقت و قدرت را در یک حالت

79. دقت و قدرت را در یک حالت

80. دقت و قدرت را در یک حالت

81. دقت و قدرت را در یک حالت

82. دقت و قدرت را در یک حالت

83. دقت و قدرت را در یک حالت

84. دقت و قدرت را در یک حالت

85. دقت و قدرت را در یک حالت

86. دقت و قدرت را در یک حالت

87. دقت و قدرت را در یک حالت

88. دقت و قدرت را در یک حالت

89. دقت و قدرت را در یک حالت

90. دقت و قدرت را در یک حالت

91. دقت و قدرت را در یک حالت

92. دقت و قدرت را در یک حالت

93. دقت و قدرت را در یک حالت

94. دقت و قدرت را در یک حالت

95. دقت و قدرت را در یک حالت

96. دقت و قدرت را در یک حالت

97. دقت و قدرت را در یک حالت

98. دقت و قدرت را در یک حالت

99. دقت و قدرت را در یک حالت

100. دقت و قدرت را در یک حالت

References:
1. Interaction Integral
2. Limited displacement extrapolation technique (LDET)
3. Assays Software
4. Green's function representation
5. Super singular element method (SSEM)
6. The reciprocal work contour integral method (RWCIM)
7. The fractal-like finite element method (FFEM)
8. Boundary colloidal method
مشخصات مکانی مدرس، ارزیابی شده 1394 دوبلو، شماره 2

آزمایشگاه: 1389

امکان فعالیت و سیاست صنعتی

استفاده از روش جدید محدود توسعه‌ای در تیمین صحبتی شدت تنش و انرژی یوله، پایل بر ترک

جدول ۲: نمایندگی

جدول ۳: ارتباط شدت تنش و درد خطا

جدول ۴: مقدارهای ترک نمایش داده شده در آزمایشات

نمودن در وضعیت مود ترکیبی قاری می‌گیرد.

مطالعات نتایج آزمایشات در جدول ۴. برای پیشینین درصد خطا در آیکونهای برای

برای برایهای قاری می‌گیرد.

در این نمونه، نخست یک حلقه در نظر گرفته شده که جواب مطلوب حاصل

شد، ولی با درنگ نمایش داده شده که ملاح تعداد نقاط در اطراف توک

ترک جوابها با دقت مطلوب به دست امده. از

میان نمونه‌ها جای نشده. این مدل ارائه شده از گرایش و نیز

نگیر شکل و کانتر تغییرات تنش در مخاطب نمایشگر آیکون متقابل

شکل ۴. در ۶٪ دمای نشان داده است از اینجایی که در ترک اعمالش

در موضوع ترک دارای مؤثر عمومی و ملی است که با برای همکار

414
مقادیر محاسبه‌شده $\frac{7}{5}$ برای حالت 1 از جمله تراکنشی مثبت و ایاکوس در حاصلات این مقاله به مقدار $\frac{4}{3}$ در جدول 5 ارائه شده است. از آنجایی که برای محاسبه حالت 2 از جمله تراکنشی مثبت و ایاکوس در حاصلات این مقاله به مقدار $\frac{3}{2}$ در جدول 5 ارائه شده است.

در این نمونه صفحه‌ای شامل ترک زاویه‌دار در حالت بارگذاری مود ترکیبی قرار می‌گیرد (شکل 7-الف). محاسبه به شکل 7-ب این مشخصات در نرم‌افزارهای مناسب و ایاکوس مدل شده است: مدول الاستیسیتی $E = 1$ MPa ضرب پوستون $\sigma = 1$ MPa تنش کششی $\sigma = 0.25$ MPa و با ضریب برقراری شرایط تنش صفحه‌ای (ضخامت نامیز ورق) برای حل‌نوردی نیازی نسبت w/h نیستند.

در حالت 7، اگر $w/h = 0.2$ باشد، نیاز به پانزده روز نبوده و در حالت 6 نیاز به چهار روز نبوده است.

در حالت 1، نیاز به چهار روز نبوده و در حالت 2 نیاز به پانزده روز نبوده است.

در حالت 3 نیاز به پانزده روز نبوده است.

در حالت 4 نیاز به چهار روز نبوده است.

در حالت 5 نیاز به چهار روز نبوده است.

در حالت 6 نیاز به پانزده روز نبوده است.

در حالت 7 نیاز به پانزده روز نبوده است.

در حالت 8 نیاز به پانزده روز نبوده است.

در حالت 9 نیاز به پانزده روز نبوده است.

در حالت 10 نیاز به پانزده روز نبوده است.

در حالت 11 نیاز به پانزده روز نبوده است.

در حالت 12 نیاز به پانزده روز نبوده است.

در حالت 13 نیاز به پانزده روز نبوده است.

در حالت 14 نیاز به پانزده روز نبوده است.

در حالت 15 نیاز به پانزده روز نبوده است.

در حالت 16 نیاز به پانزده روز نبوده است.

در حالت 17 نیاز به پانزده روز نبوده است.

در حالت 18 نیاز به پانزده روز نبوده است.

در حالت 19 نیاز به پانزده روز نبوده است.

در حالت 20 نیاز به پانزده روز نبوده است.

در حالت 21 نیاز به پانزده روز نبوده است.

در حالت 22 نیاز به پانزده روز نبوده است.

در حالت 23 نیاز به پانزده روز نبوده است.

در حالت 24 نیاز به پانزده روز نبوده است.

در حالت 25 نیاز به پانزده روز نبوده است.

در حالت 26 نیاز به پانزده روز نبوده است.

در حالت 27 نیاز به پانزده روز نبوده است.

در حالت 28 نیاز به پانزده روز نبوده است.

در حالت 29 نیاز به پانزده روز نبوده است.

در حالت 30 نیاز به پانزده روز نبوده است.

در حالت 31 نیاز به پانزده روز نبوده است.

در حالت 32 نیاز به پانزده روز نبوده است.

در حالت 33 نیاز به پانزده روز نبوده است.

در حالت 34 نیاز به پانزده روز نبوده است.

در حالت 35 نیاز به پانزده روز نبوده است.

در حالت 36 نیاز به پانزده روز نبوده است.

در حالت 37 نیاز به پانزده روز نبوده است.

در حالت 38 نیاز به پانزده روز نبوده است.

در حالت 39 نیاز به پانزده روز نبوده است.

در حالت 40 نیاز به پانزده روز نبوده است.

در حالت 41 نیاز به پانزده روز نبوده است.

در حالت 42 نیاز به پانزده روز نبوده است.

در حالت 43 نیاز به پانزده روز نبوده است.

در حالت 44 نیاز به پانزده روز نبوده است.

در حالت 45 نیاز به پانزده روز نبوده است.

در حالت 46 نیاز به پانزده روز نبوده است.

در حالت 47 نیاز به پانزده روز نبوده است.

در حالت 48 نیاز به پانزده روز نبوده است.

در حالت 49 نیاز به پانزده روز نبوده است.

در حالت 50 نیاز به پانزده روز نبوده است.

در حالت 51 نیاز به پانزده روز نبوده است.

در حالت 52 نیاز به پانزده روز نبوده است.

در حالت 53 نیاز به پانزده روز نبوده است.

در حالت 54 نیاز به پانزده روز نبوده است.

در حالت 55 نیاز به پانزده روز نبوده است.

در حالت 56 نیاز به پانزده روز نبوده است.

در حالت 57 نیاز به پانزده روز نبوده است.

در حالت 58 نیاز به پانزده روز نبوده است.

در حالت 59 نیاز به پانزده روز نبوده است.

در حالت 60 نیاز به پانزده روز نبوده است.
جدول 5: مقادیر فاکتور تش2 درصد خطای آن برای جدول 1 = \(\frac{h}{w} \)

<table>
<thead>
<tr>
<th>ضریب نسبی جدول</th>
<th>خطا نسبی جدول</th>
<th>خطا نسبی آکوسیم</th>
<th>حالت 1</th>
<th>حالت 2</th>
<th>حالت 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>19660</td>
<td>31561</td>
<td>0.0000</td>
<td>0.2644</td>
<td>0.2644</td>
<td>0.8055</td>
</tr>
<tr>
<td>22662</td>
<td>21044</td>
<td>0.0175</td>
<td>0.1196</td>
<td>0.1276</td>
<td>0.5054</td>
</tr>
<tr>
<td>16797</td>
<td>16210</td>
<td>0.0307</td>
<td>0.0463</td>
<td>0.0926</td>
<td>0.6477</td>
</tr>
</tbody>
</table>

جدول 6: مقادیر \(\frac{h}{w} \) برای حالت 1 = \(\frac{K}{a/\sqrt{m}} \)

<table>
<thead>
<tr>
<th>ضریب نسبی جدول</th>
<th>خطا نسبی جدول</th>
<th>خطا نسبی آکوسیم</th>
<th>حالت 1</th>
<th>حالت 2</th>
<th>حالت 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0963</td>
<td>0.1548</td>
<td>0.1616</td>
<td>0.1051</td>
<td>0.7739</td>
<td>0.7739</td>
</tr>
<tr>
<td>0.0708</td>
<td>0.0959</td>
<td>0.1655</td>
<td>0.1537</td>
<td>0.8470</td>
<td>0.8469</td>
</tr>
<tr>
<td>0.1117</td>
<td>0.0711</td>
<td>0.1016</td>
<td>0.0610</td>
<td>0.9830</td>
<td>0.9834</td>
</tr>
</tbody>
</table>

جدول 7: مقادیر \(\frac{h}{w} \) برای حالت 2 = \(\frac{K}{a/\sqrt{m}} \)

<table>
<thead>
<tr>
<th>ضریب نسبی جدول</th>
<th>خطا نسبی جدول</th>
<th>خطا نسبی آکوسیم</th>
<th>حالت 1</th>
<th>حالت 2</th>
<th>حالت 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2045</td>
<td>0.6136</td>
<td>0.5496</td>
<td>0.2374</td>
<td>0.4391</td>
<td>0.4373</td>
</tr>
<tr>
<td>2.1507</td>
<td>0.1900</td>
<td>0.5599</td>
<td>0.3558</td>
<td>0.4472</td>
<td>0.4513</td>
</tr>
<tr>
<td>0.5611</td>
<td>0.0623</td>
<td>0.3125</td>
<td>0.1875</td>
<td>0.4785</td>
<td>0.4809</td>
</tr>
</tbody>
</table>

جدول 8: مقادیر \(\frac{h}{w} \) برای حالت 2 = \(\frac{K}{a/\sqrt{m}} \)

<table>
<thead>
<tr>
<th>ضریب نسبی جدول</th>
<th>خطا نسبی جدول</th>
<th>خطا نسبی آکوسیم</th>
<th>حالت 1</th>
<th>حالت 2</th>
<th>حالت 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2657</td>
<td>0.7761</td>
<td>0.9051</td>
<td>0.1301</td>
<td>-0.5255</td>
<td>-0.5310</td>
</tr>
<tr>
<td>0.6947</td>
<td>0.2105</td>
<td>0.5961</td>
<td>0.7222</td>
<td>-0.6170</td>
<td>-0.6187</td>
</tr>
<tr>
<td>0.0503</td>
<td>0.0259</td>
<td>0.1219</td>
<td>0.5930</td>
<td>-0.7740</td>
<td>-0.7711</td>
</tr>
</tbody>
</table>

جدول 9: مقادیر ضریب سری و پیلیمز در حالات 1 = \(\beta = 0 \) و 2 = \(\gamma = 0 \)

<table>
<thead>
<tr>
<th>ضریب نسبی جدول</th>
<th>خطا نسبی جدول</th>
<th>خطا نسبی آکوسیم</th>
<th>حالت 1</th>
<th>حالت 2</th>
<th>حالت 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2119</td>
<td>0.4237</td>
<td>0.3181</td>
<td>0.5303</td>
<td>0.5310</td>
<td>0.9460</td>
</tr>
<tr>
<td>0.6944</td>
<td>0.6944</td>
<td>0.6944</td>
<td>-0.1340</td>
<td>-0.1340</td>
<td>-0.1440</td>
</tr>
<tr>
<td>0.0663</td>
<td>0.0653</td>
<td>0.0653</td>
<td>0.2160</td>
<td>0.2150</td>
<td>0.2150</td>
</tr>
</tbody>
</table>

جدول 10: مقادیر \(\frac{h}{w} \) برای حالت 2 = \(\frac{K}{a/\sqrt{m}} \)

<table>
<thead>
<tr>
<th>ضریب نسبی جدول</th>
<th>خطا نسبی جدول</th>
<th>خطا نسبی آکوسیم</th>
<th>حالت 1</th>
<th>حالت 2</th>
<th>حالت 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4362</td>
<td>0.7438</td>
<td>0.3275</td>
<td>0.6650</td>
<td>0.9130</td>
<td>0.9100</td>
</tr>
<tr>
<td>0.5607</td>
<td>0.2727</td>
<td>0.3486</td>
<td>0.7449</td>
<td>-0.9834</td>
<td>-0.9873</td>
</tr>
<tr>
<td>0.6522</td>
<td>0.3623</td>
<td>0.3623</td>
<td>0.1371</td>
<td>-0.1375</td>
<td>-0.1380</td>
</tr>
<tr>
<td>0.4110</td>
<td>0.2721</td>
<td>0.6803</td>
<td>-0.1466</td>
<td>-0.1466</td>
<td>-0.1466</td>
</tr>
</tbody>
</table>

\(\beta = 15^\circ \)
به منظور اجرای محدود توانایی در تهویه هویونه مرتی با‌ایل ترک

براساس این نتایج بیشترین درصد خطا در آب‌کار در محاسبه مقدار

ضریب مجهول بنده به‌وسیله روش انگرال ارائه‌شده در مرجع [21]

برابر ۰.۹۰۰۲ است همچنین بیشترین درصد خطا در تاریک‌کردن مثلثی نیز بر

محاسبه مقدار بنده به‌‌وسیله روش هویونه مرتی و روش ارائه

محدود قرار گرفت. این نتایج در مرجع [21] برابر ۰.۹۴۴۷ است.

بیشترین درصد خطا در آب‌کار در محاسبه مقدار

ضریب مجهول بنده به‌وسیله روش هویونه مرتی ارائه‌شده در مرجع

برابر ۰.۹۰۰۲ است همچنین بیشترین درصد خطا در تاریک‌کردن مثلثی نیز بر

محاسبه مقدار بنده به‌‌وسیله روش هویونه مرتی و روش ارائه

محدود قرار گرفت. این نتایج در مرجع [21] برابر ۰.۹۴۴۷ است.

براساس این نتایج بیشترین درصد خطا در آب‌کار در محاسبه مقدار

ضریب مجهول بنده به‌وسیله روش هویونه مرتی ارائه‌شده در مرجع

برابر ۰.۹۰۰۲ است همچنین بیشترین درصد خطا در تاریک‌کردن مثلثی نیز بر

محاسبه مقدار بنده به‌‌وسیله روش هویونه مرتی و روش ارائه

محدود قرار گرفت. این نتایج در مرجع [21] برابر ۰.۹۴۴۷ است.

براساس این نتایج بیشترین درصد خطا در آب‌کار در محاسبه مقدار

ضریب مجهول بنده به‌وسیله روش هویونه مرتی ارائه‌شده در مرجع

برابر ۰.۹۰۰۲ است همچنین بیشترین درصد خطا در تاریک‌کردن مثلثی نیز بر

محاسبه مقدار بنده به‌‌وسیله روش هویونه مرتی و روش ارائه

محدود قرار گرفت. این نتایج در مرجع [21] برابر ۰.۹۴۴۷ است.

به منظور اجرای محدود توانایی در تهویه هویونه مرتی با‌ایل ترک

براساس این نتایج بیشترین درصد خطا در آب‌کار در محاسبه مقدار

ضریب مجهول بنده به‌وسیله روش هویونه مرتی ارائه‌شده در مرجع

برابر ۰.۹۰۰۲ است همچنین بیشترین درصد خطا در تاریک‌کردن مثلثی نیز بر

محاسبه مقدار بنده به‌‌وسیله روش هویونه مرتی و روش ارائه

محدود قرار گرفت. این نتایج در مرجع [21] برابر ۰.۹۴۴۷ است.

به منظور اجرای محدود توانایی در تهویه هویونه مرتی با‌ایل ترک

براساس این نتایج بیشترین درصد خطا در آب‌کار در محاسبه مقدار

ضریب مجهول بنده به‌وسیله روش هویونه مرتی ارائه‌شده در مرجع

برابر ۰.۹۰۰۲ است همچنین بیشترین درصد خطا در تاریک‌کردن مثلثی نیز بر

محاسبه مقدار بنده به‌‌وسیله روش هویونه مرتی و روش ارائه

محدود قرار گرفت. این نتایج در مرجع [21] برابر ۰.۹۴۴۷ است.

19. M. Nejati, Department of Mechanical Engineering, Iran University of Science and Technology, MS thesis, 2014. (In Farsi)

