مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی اثر تغییرات هندسه چرخ متحرک بر عملکرد حالت توربینی پمپ سانتریفیوژ در شرایط حاکم بر شبکه توزیع آب شهری

نویسندگان
1 استادیار دانشگاه تهران
2 دانشگاه آزاد اسلامی تهران مرکزی
چکیده
با افزایش میزان آلایندگی نیروگاه‌های حرارتی در کشورهای صنعتی و در حال توسعه، تمایل به استفاده از نیروگاه‌های برق آبی در اندازه‌های کوچک افزایش یافت. در مناطق شهری با اقلیم ناهموار، اختلاف ارتفاع قابل‌توجهی بین تصفیه‌خانه‌ها و محل مصرف وجود دارد که می‌توان این فشار را از طریق نیروگاه‌های فشارشکن به برق تبدیل نمود. با بررسی امکان استفاده از پمپ به عنوان توربین و کاهش هزینه احداث یک نیروگاه برق آبی میکرو، و امکان جایگزینی آن با فشارشکن‌های سنتی خطوط توزیع آب، استفاده از این نیروگاه‌ها گسترش یافته است. لذا در این بررسی پمپ سانتریفیوژ توسط نرم‌افزار سی اف توربو طراحی و جهت تحلیل عددی سه‌بعدی سیال از مدل آشفتگی کا-امگا اس‌اس‌تی با استفاده از نرم‌افزار سی اف ایکس شبیه‌سازی انجام شده است. نتایج عددی با نتایج آزمایشگاهی موجود در حالت پمپی و توربینی مقایسه شده‌اند و تطابق خوبی را نشان دادند. جهت افزایش بازده پمپ توربین (پمپ معکوس) کاهش قطر پره‌های پروانه در دبی‌های مختلف مورد بررسی قرار گرفت که نتایج حاکی از کاهش میزان پدیده جدایش در اطراف پره‌ها و سبب افزایش کمیت‌های هیدرولیکی در نزدیکی نقطه عملکردی حالت توربینی بود، اما کاهش قطر در دبی‌های خیلی پایین‌تر از نقطه عملکردی تأثیر چندانی در بهبود بازده نداشت، در نقطه عملکردی کاهش قطر سبب افزایش 85/11 و 65/13 درصدی هد و گشتاور شد و بازده 26/1 درصد بهبود یافت.
کلیدواژه‌ها

عنوان مقاله English

Investigation Effect of Changes Geometry of Impeller on Turbine Mode Performance of the Centrifugal Pump at the Governing Condition of the Urban Water Distribution Network

نویسندگان English

Mojtaba Tahani 1
salman saremian 2
1 UT
2 University of Islamic Azad Central Tehran Branch
چکیده English

With increasing amount of pollution by thermal power plants in Industrial and developing countries, tend to use small-sized hydroelectric plants increased. In complex terrain regions there are usually a significant height difference between refineries and using place, the pressure can to produce electricity by power plants pressure reducer. The power plant is due to the relatively high initial cost less were used. Gradually, with the possibility of using pump as turbine and reducing the cost of building a micro power plant use the plant was expanded. Therefore, in this study centrifugal pump by CFturbo software was designed and for Numerical analysis of the three-dimensional fluid, the simulation was performed using the CFX software on SST k-ω turbulence model. The numerical results were compared with experimental in pump and turbine modes and showed good agreement. In order to increase the efficiency of the turbine pump (reverse pump), the decrease in the diameter of the impeller blades at different flow rates was investigated, which resulted was decrease in the amount of separation phenomenon around blades and causing increase in hydraulic quantities nearby the turbine bep point, but reducing the diameter at the flow rates very lower from bep point, didn’t have great impact at improvement of efficiency, at the bep point reducing the diameter, caused to increase 11.86 and 13.65 percent of the head and torque, and improved efficiency 1.26 percent.

کلیدواژه‌ها English

Pump as turbine
Pressure Reducer
Computational Fluid Dynamics
Increase the efficiency
Blade thickness
M. De Marchis, C. M. Fontanazza, G. Freni, A. Messineo, B. Milici, E. Napoli, V. Notaro, V. Puleo, A. Scopa, Energy Recovery in Water Distribution Networks. Implementation of Pumps as Turbine in a Dynamic Numerical Model, Procedia Engineering, Vol. 70, pp. 439-448, 2014.
H. Ramos, A. Borga, Pumps as turbines: an unconventional solution to energy production, Urban Water, Vol. 1, No. 3, pp. 261-263, 1999.
H. Ramos, D. Covas, L. Araujo, M. Mello, Available energy assessment in water supply systems, Proceedings of The 31th International Association for Hydro-Environment Engineering and Research Congress, Seoul, Korea, September 11-16, 2005.
T. Agarwal, Review of pump as turbine (PAT) for micro-hydropower, International Journal of Emerging Technology and Advanced Engineering, Vol. 2, No. 11, pp. 163-169, 2012.
A. Rodrigues, A. A. Williams, P. Singh, F. Nestmann, Hydraulic Analysis of a Pump as a Turbine with CFD and Experimental Data, Proceedings of The Computational Fluid Dynamics for Fluid Machinery, London, UK, November 18, 2003.
S. Derakhshan, A. Nourbakhsh, Theoretical, numerical and experimental investigation of centrifugal pumps in reverse operation, Experimental Thermal and Fluid Science, Vol. 32, No. 8, pp. 1620-1627, 2008.
J. Fernández, R. Barrio, E. Blanco, J. Parrondo, A. Marcos, Experimental and numerical investigation of a centrifugal pump working as a turbine, Proceeding of ASME 2009 Fluids Engineering Division Summer Meeting Conference, Vail, Colorado, USA, August 2–6, 2009.
P. Singh, F. Nestmann, Experimental optimization of a free vortex propeller runner for microhydro application, Experimental Thermal and Fluid Science, Vol. 33, No. 6, pp. 991-1002, 2010.
H. Nautiyal, Varun, A. Kumar, S. Yadav, Experimental investigation of centrifugal pump working as turbine for small hydropower systems, Energy Science and Technology, Vol. 1, No. 1, pp. 79-86, 2011.
O. Fecarotta, A. Carravetta, H. M. Ramos, CFD and comparisons for a pump as turbine mesh reliability and performance concerns, International Journal of Energy and Environment, Vol. 2, No. 1, pp. 39-48, 2011.
S. S. Yang, F. Y. Kong, S. Derakhshan, Theoretical, numerical and experimental prediction of pump as turbine performance, Renewable Energy, Vol. 48, No. 1, pp. 507-513, 2012.
S. S. Yang, F. Y. Kong, W. M. Jiang, Q. X. Yun, Effects of impeller trimming influencing pump as turbine, Computers & Fluids, Vol. 67, pp. 72-78, 2012.
A. Bozorgi, E. Javidpour, A. Riasi, A. Nourbakhsh, Numerical and experimental study of using axial pump as turbine in pico hydropower plants, Renewable Energy, Vol. 53, pp. 258-264, 2013.
R. N. Patel, S. V. Jain, A. Swarnkar, K. H. Motwani, Effects of impeller diameter and rotational speed on performance of pump running in turbine mode, Journal of Energy Energy Conversion and Management, Vol. 89, pp. 6-19, 2015.
E. Dribssa, T. Nigussie, B. Tsegaye, Performance analysis of centrifugal pump operating as turbine for identified micro/pico hydro site of ethiopia, International Journal of Engineering Research and General Science, Vol. 3, No. 3, pp. 6-19, 2015.
W. G. Li, Effects of viscosity on turbine mode performance and flow of a low specific speed centrifugal pump, Applied Mathematical Modelling, Vol. 40, No. 2, pp. 904-926, 2016.
D. Mohammadipour, A. Najafi, H. Alemi, A. Riasi, Numerical Analysis on the Effects of Impeller Geometry Parameters for a Centrifugal Pump in Reverse Operation, Modares Mechanical Engineering, Vol. 17, No. 9, pp. 13-24, 2017. (in Persian فارسی )
S. Huang., G. Qiu, X. Su, J. Chen, W. Zou, Performance prediction of a centrifugal pump as turbine using rotor-volute matching principle, Renewable Energy, Vol. 108, pp. 64-71, 2017.
J. W. Li, Y. N. Zhang, K. H. Liu, H. Z. Xian, J. X. Yu, Numerical simulation of hydraulic force on the impeller of reversible pump turbines in generating mode, Journal of Hydrodynamics, Vol. 29, No. 4, pp. 603-609, 2017.
M. H. Shojaeefard, M. Tahani, M. B. Ehghaghi, M. A. Fallahian, M. Beglari, Numerical study of the effects of some geometric characteristics of a centrifugal pump impeller that pumps a viscous fluid, Computers & Fluids, Vol. 60, pp. 61-70, 2012.
A. Bozorgi, Small axial turbine blade optimization with very little loss in height, M. Sc Thesis, Deprtment of Mechanical Engineering, University of Tehran, Tehran, 2011. (In Persian فارسی )