[1] H. Rezvani, An Overall Review on Traditional Chinese Medicine and Acupuncture, pp. 30-40, Tehran: Almoalla, 2015. (In Persian فارسی(
[2] L. Xu, M. Q.-H. Meng, K. Wang, W. Lu, N. Li, Pulse images recognition using fuzzy neural network, Expert Systems with Applications, Vol. 36, No. 2, pp. 3805-3811, 2009.
[3] J. Zhang, R. Wang, S. Lu, J. Gong, Z. Zhao, H. Chen, L. Cui, N. Wang, YYu, EasiCPRS: design and implementation of a portable Chinese pulsewave retrieval system, Proceedings of the 9th ACM Conference on Embedded Networked Sensor Systems, New York: ACM, pp. 149-161, 2011.
[4] L. Xu, M. Q.-H. Meng, X. Qi, K. Wang, Morphology variability analysis of wrist pulse waveform for assessment of arteriosclerosis status, Journal of Medical Systems, Vol. 34, No. 3, pp. 331-339, 2010.
[5] Q. Y. Wu, Z. C. Ma, Y. N. Sun, Noninvasive power spectrum analysis of radial pressure waveform for assessment of vascular system, Journal of Mechanics in Medicine and Biology, Vol. 12, No. 01, pp. 125-138, 2012.
[6] C. M. Huang, C. C. Wei, Y. T. Liao, H. C. Chang, S. T. Kao, T. C. Li, Developing the effective method of spectral harmonic energy ratio to analyze the arterial pulse spectrum, Evidence-Based Complementary and Alternative Medicine, Vol. 2011, No. 1, pp. 1-9, 2011.
[7] Q. Wu, Power spectral analysis of wrist pulse signal in evaluating adult age, Intelligence Information Processing and Trusted Computing (IPTC), 2010 International Symposium on, New Jercy: IEEE, pp. 48-50, 2010.
[8] N. Garg, N. Babbar, Feature extraction of wrist pulse signals using gabor spectrogram, Indian Journal of Science and Technology, Vol. 9, No. 47, pp. 1-8, 2016.
[9] Y. Chen, L. Zhang, D. Zhang, D. Zhang, Computerized wrist pulse signal diagnosis using modified auto-regressive models, Journal of Medical Systems, Vol. 35, No. 3, pp. 321-328, 2011.
[10] J. J. Shu, Y. Sun, Developing classification indices for Chinese pulse diagnosis, Complementary Therapies in Medicine, Vol. 15, No. 3, pp. 190- 198, 2007.
[11] Y. Chen, L. Zhang, D. Zhang, D. Zhang, Wrist pulse signal diagnosis using modified gaussian models and fuzzy c-means classification, Medical Engineering & Physics, Vol. 31, No. 10, pp. 1283-1289, 2009.
[12] H. T. Wu, C. H. Lee, C. K. Sun, J. T. Hsu, R. M. Huang, C. J. Tang, Arterial waveforms measured at the wrist as indicators of diabetic endothelial dysfunction in the elderly, IEEE Transactions on Instrumentation and Measurement, Vol. 61, No. 1, pp. 162-169, 2012.
[13] R. Guo, Y. Wang, H. Yan, J. Yan, F. Yuan, Z. Xu, G. Liu, W. Xu, Analysis and recognition of traditional Chinese medicine pulse based on the hilberthuang transform and random forest in patients with coronary heart disease, Evidence-Based Complementary and Alternative Medicine, Vol. 2015, No. 1, pp. 1-8, 2015.
[14] L. Zhang, W. Yang, D. Zhang, Wrist-pulse signal diagnosis using ICpulse, Bioinformatics and Biomedical Engineering, 2009. ICBBE 2009. 3rd International Conference on, New Jercy: IEEE, pp. 1-4, 2009.
[15] D. Rangaprakash, D. N. Dutt, Study of wrist pulse signals using time domain spatial features, Computers & Electrical Engineering, Vol. 45, No. 1, pp. 100-107, 2015.
[16] D. Meyer, F. Leisch, K. Hornik, The support vector machine under test, Neurocomputing, Vol. 55, No. 1, pp. 169-186, 2003.
[17] J. Fortin, G. Haitchi, A. Bojic, W. Habenbacher, R. Grullenberger, A. Heller, R. Pacher, P. Wach, F. Skrabal, Validation and verification of the Task Force Monitor, Results of Clinical Studies for FDA, Vol. 510, No. 1, pp. 1-7, 2001.
[18] J. Fortin, T. Klinger, C. Wagner, H. Sterner, C. Madritsch, R. Grüllenberger, A. Hacker, W. Habenbacher, F. Skrabal, The Task Force Monitor—a non-invasive beat-to-beat monitor for hemodynamic and autonomic function of the human body, Proceedings of the 20th annual International Conference of the IEEE Engineering in Medicine and Biology Society, New Jercy: IEEE, pp. 1-8, 1998.
[19] K. Wang, L. Xu, L. Wang, Z. Li, Y. Li, Pulse baseline wander removal using wavelet approximation, in Computers in Cardiology, New Jercy: IEEE, pp. 605-608, 2003.
[20] J. Esmaeilpour, S. Mirzakoochaki, Classification of cardiac arrhythmias by learning vector quantizater network and based on the extracted features from the wavelet transformation, Iranian Journal of Biomedical Engineering, Vol. 1, No. 3, pp. 167-176, 2007. (in Persian فارسی(
[21] R. Soleymani, M. Rouhani, Heart arrhythmia diagnosis by neural networks using chaotic features of HRV signal and generalized discriminant analysis, Iranian Journal of Biomedical Engineering, Vol. 5, No. 1, pp. 89-104, 2011. (in Persian فارسی(