مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بکارگیری کنترل تطبیقی مدل چندگانه برای تنظیم موقعیت آنتن سیستم ارتباط ماهواره با تأخیر متغیر با زمان در ورودی کنترل

نویسندگان
1 دانشگاه صنعتی مالک اشتر، مجتمع برق و الکترونیک، ایران، تهران
2 دانشگاه صنعتی خواجه نصیرالدین طوسی، دانشکده مهندسی برق و کامپیوتر، گروه کنترل، تهران، ایران
3 دانشگاه صنعتی خواجه نصیر-دانشکده هوا فضا
چکیده
در این مقاله، یک روش جدید برای کنترل موقعیت آنتن یک ماهواره با تاخیر متغیر با زمان در ورودی با استفاده از رویکرد کنترل کننده تطبیقی مدل چندگانه پیشنهاد می‌گردد. انتخاب تخمینگر مناسب و آلگوریتم وزندهی کنترل کننده‌ها با استفاده از خطای تخمین تأخیر، از ویژگیهای کنترل کننده ارائه شده است. تأخیر در ورودی سیستم باعث انحراف از عملکرد مطلوب شده و در صورتی که تأخیر ناشناخته و متغیر با زمان باشد، احتمال ناپایداری سیستم تحت کنترل وجود دارد. در این موارد می‌بایست تاخیر زمانی را شناسایی و سیگنال کنترل برای مقابله با اثرات نامطلوب آن تنظیم شود. با فرض معلوم بودن مقدار بیشینه تاخیر. تاخیر سیستم به چندین محدوده کوچکتر تقسیم شده و برای هر محدوده یک کنترل کننده مناسب PI جهت تضمین پایداری و بهبود رفتار سیستم حلقه بسته طراحی می‌شود. در حالت بر خط با بکارگیری یک روش موثر و مناسب، تاخیر زمانی سیستم تخمین زده شده و سیگنال کنترل نهایی با استفاده از ترکیب وزنی کنترل کننده‌ها تولید و به سیستم اعمال می‌شود. وزن سیگنالهای کنترل تابعی از قدر مطلق خطای بین زمان تأخیر تخمینی و متوسط زمان تأخیر واقعی در هر باند می‌باشد. کارآیی سیستم کنترل طراحی شده با استفاده از شبیه‌سازی متعدد‌ مورد ارزیابی و تجزیه و تحلیل قرار گرفته و نشان داده می شود که سیستم حلقه بسته تحت شرایط مختلف پایدار است. نتایج شبیه‌سازی، کارآیی مطلوب سیستم کنترل پیشنهادی نسبت به روش کنترل معمولی PI را نشان می‌دهد.
کلیدواژه‌ها

عنوان مقاله English

Applying Multiple Model Adaptive Control to Adjustment of Satellite Antenna Position with time varying input delay

نویسندگان English

Firouz Allahverdizadeh 1
Ali Khaki Sedigh 2
Jafar Rowshanian 3
1 Malek Ashtar University of Technology
2 Control Group, Electrical and Computer Eng., K.N.Toosi University, Tehran, Iran
چکیده English

In this paper, a new Multiple Model Adaptive Control (MMAC) is proposed to control of the satellite antenna position with time varying input delay. Selecting of adequate delay estimation method and weighting algorithm using delay estimation error are features of proposed controller. Input delay can be effect on the performance of the closed loop system and if delay time is unknown and time varying, the closed loop system will probably be unstable. At these cases, delay time must be identified to adopt control signal. It is assumed that upper bound of the delay time is known. Delay time is divided into several small bounds and then an adequate PI controller is designed for each bound to guarantee closed loop system performance and stability. In the on-line mode, delay time is identified by adequate estimation algorithm and the control signal is constructed by a weighted sum of the designed controllers output. Control signals weights are a function of the absolute error between the estimated and the average delay time in each bound. Performance of the proposed method and stability of closed-loop system is assessed using several simulations of the system. Simulation results confirm the effectiveness of the proposed algorithm with respect to conventional PI controller.

کلیدواژه‌ها English

Multiple Model Adaptive Control
Delay Systems
delay time estimation methods
weighted switching method
Satellite communication
[1] K. S. Narendra, C. Xiang, Adaptive control of discrete-time systems using multiple models, IEEE Transactions on Automatic Control, Vol. 45, No. 9, pp. 1669-1686, 2000.
[2] D. T. Magill, Optimal adaptive estimations of sampled stochastic processes, IEEE Transaction on Automatic Control, Vol. AC-10, pp. 434–439, 1965.
[3] D. G. Lainiotis, Partitioning: A unifying framework for adaptive systems—I: Estimation, Proceedings of the IEEE, Vol. 64, No. 8, pp. 1126–1143, Aug. 1976.
[4] D. G. Lainiotis, Partitioning: A unifying framework for adaptive systems—II: Control, Proceedings of the IEEE, Vol. 64, No. 8, pp. 1182–1197, Aug. 1976.
[5] M. Athans, K. P. Dunn, C. S. Greene, W. H. Lee, et al., The stochastic control of the F-8c aircraft using a multiple model adaptive control (MMAC) method—Part I: Equilibrium flight, IEEE Transaction on Automatic Control, Vol. AC-22, pp. 768–780, 1977.
[6] R. L. Moose, H. F. Vanlandingham, D. H. McCabe, Modeling and estimation for tracking maneuvering targets, IEEE Transaction on Aerospace and Electrical System, Vol. AES-15, pp. 448–456, 1979.
[7] C. Yu, R. J. Roy, H. Kaufman, B. W. Bequette, Multiple-model adaptive predictive control of mean arterial pressure and cardiac output, IEEE Transaction on Biomedical Engineering, Vol. 39, pp. 765–778, 1992.
[8] X. R. Li, Y. B. Shalom, Design of an interacting multiple model algorithm for air traffic control tracking, IEEE Transaction on Control System Technology, Vol. 1, pp. 186–194, 1993.
[9] D. W. Lane, P. S. Maybeck, Multiple model adaptive estimation applied to the LAMBDA URV for failure detection and identification, IEEE Conference on Decision Control, Vol. 33, pp. 678–683, 1994.
[10] T. Chai, L. Zhai, H. Yue, Multiple models and neural networks based decoupling control of ball mill coal-pulverizing systems, Journal of Process Control, Vol. 21, pp. 351–366, 2011.
[11] R. Manikandan, R. Vinodha, Multiple model based adaptive control for shell and tube heat exchanger process, International Journal of Applied Engineering Research, Vol. 11, No. 5, pp. 3175-3180, 2016.
[12] B. Martensson, Adaptive Stabilization, Ph.D. Thesis, Lund Institute of Technology Lund, Sweden, 1986.
[13] M. Fu, B. R. Barmish, Adaptive stabilization of linear systems via switching control, IEEE Transaction on Automatic Control, Vol. AC-31, No. 12, pp. 1097–1103, 1986.
[14] A. T. Patel, S. K Shah, H. A Shah, Design and analysis of switched multiple model adaptive control for local controllers, International Journal of Engineering Associates, Vol. 1, Issue. 4, pp. 164-168, 2013.
[15] R. H. Middleton, G. C. Goodwin, D. J. Hill, D. Q. Mayne, Design issues in adaptive control, IEEE Transaction on Automatic Control, Vol. 33, No. 1, pp. 50–58, 1988.
[16] A. S. Morse, D. Q. Mayne, G. C. Goodwin, Applications of hysteresis switching in parameter adaptive control, IEEE Transaction Automatic Control, Vol. 37, No. 9, pp. 1343–1354, 1992.
[17] S. R. Weller, G. C. Goodwin, Hysteresis switching adaptive control of linear multivariable systems, IEEE Transaction on Automatic Control, Vol. 39, No. 7, pp. 1360–1375, 1994.
[18] W. Zhang, Q. Li, Weighted multiple model adaptive control of time-varying systems, Journal of Robotics, Networking and Artificial Life, Vol. 1, No. 4, pp. 291-294 2015.
[19] C. Tan, G. Tao, R. Qi, Direct adaptive multiple-model control schemes, American Control Conference (ACC), Washington, DC, USA, pp. 4933- 4939, June 17-19, 2013.
[20] Y. Z. Gang, Q. J. lie, PID neural network adaptive predictive control for long time delay system, International Conference in Information Computing and Application, Part 1: Communications in Computer and Information Science, Springer-Verlag Berlin Heidelberg, pp. 283–292, 2013
[21] K. B. Blyuss, Y. N. Kyrychko, P. Hovel, E. Scholl, Control of unstable steady states in neutral time-delayed systems, The European Physical Journal B, Vol. 65, No. 4, pp. 571-576, 2008 .
[22] C. L. Zhang, J. M. Li, Adaptive iterative learning control for nonlinear timedelay systems with periodic disturbances using FSE-neural network, International Journal of Automation and Computing, Vol. 8, No. 4, pp. 403- 410, 2011.
[23] J. H. Kim, Delay and its time-derivative dependent robust stability of time delayed linear systems with uncertainty, IEEE Transaction On Automatic Control, Vol. 46, No. 5, 2001.
[24] F. El Hauusi, El H. Tissir, Delay and its time-derivative dependent robust stability of uncertain neutral systems with saturating actuators, International Journal of Automation and Computing, Vol. 7, No. 4, pp. 445-462, 2010.
[25] S. Ahmed, B. Huang, S. L. Shah, Parameter and delay estimation of continuous-time models using a linear filter, Journal of Process Control, Vol. 16, No. 4, pp. 323-331, 2006.
[26] X. Hong, Q. Zhu. An on-line algorithm of uncertain time delay estimation in a continuous system, IEEE International Conference on Networking, Sensing and Control, Okayama, Japan, pp. 498-501, March 26-29, 2009.
[27] A. B. Rad, W. L. Lo. K. M. Tsang, Simultaneous online identification of rational dynamics and time delay: A correlation-based approach, IEEE Transactions on Control Systems Technology, Vol. 11, No. 6, pp. 957-959, 2003.
[28] F. Gianni, C. Maffezzoni, R. Scattolini, Recursive estimation of time delay in sampled systems, Automatica, Vol. 27, No. 4, pp. 653-661, 1991.
[29] M. A. Rami, M. Schönlein, J. Jordan, Estimation of linear positive systems with unknown time-varying delays, European Journal of Control, Vol. 19, pp. 179-187, 2013.
[30] E. Hidayat, A. Medvedev, Laguerre domain identification of continuous linear time-delay systems from impulse response data, Automatica, Vol. 48, pp. 2902-2907, 2012.
[31] S. Björklund, L. Ljung, An improved phase method for time-delay estimation, Automatica, Vol. 45, No. 10, pp. 2467-2470, 2009.
[32] J. Roe, R. Gao, A.n O'Dwyer, Identification of a time-delayed process model using an overparameterisation method, Proceedings of the China-Ireland International Conference on Information and Communications Technologies, Dublin City University, Ireland, 28-29 August, 2007.
[33] K. I. Taarit, L. Belkoura, M. Ksouri, J. P. Richard, A fast identification algorithm for systems with delayed inputs, International Journal of Systems Science, Vol. 42, No. 3, pp. 449-456, 2011.
[34] G. C. Goodwin, K. S. Sin, Adaptive Filtering, Prediction and Control, pp. 49-71, Englewood Cliffs, NJ: Prentice Hall, 1984.
[35] S. Obuz, J. R. Klotz, R. Kamalapurkar, W. Dixon, Unknown time-varying input delay compensation for uncertain, Automatica, Vol. 76, pp. 222–229, 2017.
[36] A. A. Pyrkin, A. A. Bobtsov, S. V. Aranovskiy, S. A. Kolyubin, V. S. Gromov, Adaptive controller for linear plant with parametric uncertainties, input delay and unknown disturbance, Preprints of the 19th World Congress The International Federation of Automatic Control, Cape Town, South Africa, pp. 11294-11298, August 24-29, 2014.
[37] S. Shi, Y. Fang, A. J. Li, Adaptive robust control for uncertain nonlinear systems with time-varying delay, 8th IEEE International Conference on Control and Automation, Xiamen, China, June 9-11, 2010.