مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی تاثیر متغیرهای جوشکاری ضربانی مغناطیسی بر خواص ساختاری و مکانیکی اتصال‌-AA4014-AA7075

نویسندگان
1 کارشناسی ارشد، مهندسی مواد، دانشگاه تربیت مدرس، تهران، ایران
2 دانشگاه تربیت مدرس
3 دانشکده ی علم و مهندسی مواد، دانشگاه صنعتی شریف
چکیده
در پژوهش حاضر، اتصال های لوله آلومینیم 4014 به مفتول آلومینیم 7075 توسط فرآیند جوشکاری ضربانی مغناطیسی بررسی شد. برای ایجاد اتصال از سه زاویه برخورد 4، 6 و 8o و ولتاژهای جوشکاری 6 و kV 7 استفاده شد. ریزساختار سطح مقطع جوش توسط میکروسکوپ نوری و میکروسکوپ الکترونی روبشی و خواص مکانیکی به سیله آزمون سختی‎ و کشش مورد بررسی قرار گرفت. نتایج نشان داد که در زاویه های برخورد 4 و 6o، با افزایش ولتاژ جوشکاری از 6 به kV 7، مورفولوژی فصل مشترک از خطی به موجی تغییر می یابد. در زاویه برخورد 8o، افزایش ولتاژ باعث ذوب شدگی موضعی بیشتر و تخریب فصل مشترک می شود. در زاویه یکسان با افزایش ولتاژ، به دلیل کارسختی و تغییرشکل پلاستیک بالاتر، سختی افزایش می یابد. از طرف دیگر، اثر ولتاژ جوشکاری بر سختی فصل‎مشترک جوش نسبت به زاویه برخورد بیشتر است. نتایج آزمون کشش نشان داد که با افزایش ولتاژ، در زوایای برخورد کم، استحکام برشی افزایش و در زاویه برخورد بالا، به دلیل تشکیل حفره در فصل مشترک، استحکام برشی کاهش می یابد. نتایج نشان داد که اتصال لوله به مفتول، تحت زاویه برخورد 6o و ولتاژ kV 7، دارای فصل مشترک موجی و پیوسته بوده و بالاترین استحکام برشی را در میان نمونه ها دارد.
کلیدواژه‌ها

عنوان مقاله English

Investigation on the Effects of Magnetic Pulse Welding Parameters on the Structural and Mechanical Properties of AA4014-AA7075 Joint

نویسندگان English

Mehdi Pourabbas 1
A. Abdolahzadeh 2
Majid Pouranvari 3
1 Department of Material Engineering, Tarbiat Modares University, Tehran, Iran
2 Tarbiat Modares University
3 Materials Science and Engineering, Sharif University of Technology
چکیده English

In this work, joining of 4014 Aluminum tube to 7075 rod is studied using magnetic pulse welding process. The effect of impact angle (4, 6 and 8 degrees) and welding voltage (6 and 7 kV) on the joint are investigated. The microstructure of the weld cross section was evaluated using optical and scanning electron microscopy and mechanical properties of the welds were evaluated by microhardness and tensile tests. The results showed that, for the impact angles of 4 and 6º, the increase of welding voltage from 6 to 7 kV, leads to the change morphology of interfacial from straight to wavy. While, for the impact angle of 8º, the increase of the welding voltage increases local melting and results in the degradation of the interface. At the same angle, increasing the welding voltage increases the hardness due to the higher work hardening and severe plastic deformation. On the other hand, the effect of welding voltage on the hardness is dominant compared to the impact angle. The results of the tensile test showed that, for the low impact angles, increasing the welding voltage increases the shear strength, while, for the higher impact angles, it decreases the shear strength because of creating holes in welding interface. The results showed that joining of aluminum tube/rod with impact angle of 6º and welding voltage of 7 kV leads in uniform and wavy interface with higher shear strength in comparison with other conditions.

کلیدواژه‌ها English

Aluminum
Magnetic Pulse Welding
Local Melting
Shear Strength
[1] S. Mishra, S. K. Sharma, S. Kumar, K. Sagar, M. Meena, and A. Shyam, 40kJ magnetic pulse welding system for expansion welding of aluminium 6061 tube, Journal of Materials Processing Technology, Vol. 240, pp. 168-175, 2017.
[2] S. Chen, G. S. Daehn, A. Vivek, B. Liu, S. Hansen, J. Huang and S. Lin, Interfacial microstructures and mechanical property of vaporizing foil actuator welding of aluminum alloy to steel, Materials Science and Engineering: A, Vol. 659, pp. 12-21, 2016.
[3] M. Hahn, C. Weddeling, J. Lueg-Althoff, and A. E. Tekkaya, Analytical approach for magnetic pulse welding of sheet connections, Journal of Materials Processing Technology, Vol. 230, pp. 131-142, 2016.
[4] J. Bellmann, J. Lueg-Althoff, G. Goebel, S. Gies, E. Beyer, and A. Tekkaya, Effects of surface coatings on the joint formation during magnetic pulse welding in tube-to-cylinder configuration, Proceedings of 7th International Conference on High Speed Forming, April 27th-28th, Dortmund, Germany, pp. 159-171. 2016.
[5] A.K. Jassim, Magnetic pulse welding technology. Proceedings of the 1st International Conference on Energy, Power and Control (EPC-IQ),Basrah, Iraq: IEEE, pp. 363-373, 2010.
[6] C. Weddeling, M. Hahn, G. Daehn, A. Tekkaya, Uniform pressure electromagnetic actuator–An innovative tool for magnetic pulse welding, Procedia CIRP, Vol. 18, pp. 156-61, 2014.
[7] B. M. C. Tomás, Magnetic Pulse Welding, Ph.D. Thesis, Universidade Nova de Lisboa, Lisboa, 2010.
[8] J.-G. Lee, J.-J. Park, M.-K. Lee, C.-K. Rhee, T.-K. Kim, A. Spirin, V. Krutikov, S. Paranin, End closure joining of ferritic-martensitic and oxidedispersion strengthened steel cladding tubes by magnetic pulse welding, Metallurgical and Materials Transactions A, Vol. 46, No 7, pp. 3132-9. 2015.
[9] O. Becher, M. Nahmany, D. Ashkenazi, V. Shribman, A. Stern, On bond formation in magnetic pulse welded joints, The annals of dunarea de jos university of galati fascicle XII: Welding Equipment and Technology, Vol. 25, p. 23, 2014.
[10] A. Tomokatsu, Interfacial observation of parallel seam welded aluminum sheets by magnetic pulse welding method with collision between metal jets, Qarterly Journal of the Japan Welding Society, Vol. 33, No 2, pp. 130-4, 2015.
[11] A. Nassiri, G. Chini, and B. Kinsey, Spatial stability analysis of emergent wavy interfacial patterns in magnetic pulsed welding. CIRP Annals Manufacturing Technology, Vol 63, No 1, pp. 245-248,2014.
[12] J. Verstraete, W. De Waele, K. Faes, Magnetic pulse welding: lessons to be learned from explosive welding, Sustainable Construction and Design (SCAD), Vol. 2. No. 3, pp. 458-464, 2011.
[13] Y. Zhang, S.S. Babu, and G.S. Daehn, Interfacial ultrafine-grained structures on aluminum alloy 6061 joint and copper alloy 110 joint fabricated by magnetic pulse welding, Journal of Materials Science, Vol. 45, No. 17, pp. 4645-4651, 2010.
[14] R.N. Raoelison, N. Buiron, M. Rachik, D. Haye, G. Franz, and M. Habak, Study of the elaboration of a practical weldability window in magnetic pulse welding, Journal of Materials Processing Technology, Vol. 213,No. 8, pp. 1348-1354, 2013.
[15] A. Stern, O. Becher, M. Nahmany, D. Ashkenazi, and V. Shribman, Jet composition in magnetic pulse welding: Al-Al and Al-Mg couples, Weld Journal, Vol 94, pp.257-284, 2015.
[16] Y. Zhang, Investigation of Magnetic Pulse Welding on Lap Joint of Similar and Dissimilar Materials, Ph.D. Thesis, The Ohio State University, Columbus, 2010.
[17] R. Raoelison, T. Sapanathan, N. Buiron, M. Rachik, Magnetic pulse welding of Al/Al and Al/Cu metal pairs: Consequences of the dissimilar combination on the interfacial behavior during the welding process, Journal of Manufacturing Processes, Vol. 20, pp. 112-27, 2015.
[18] S. Sharafiev, C. Pabst, M. F. Wagner, and P. Groche, Microstructural characterisation of interfaces in magnetic pulse welded aluminum/aluminum joints, Proceedings of IOP Conference Series: Materials Science and Engineering, Vol. 118, No. 1, p. 012016, 2016.
[19] X. Wu, J. Shang, An investigation of magnetic pulse welding of Al/Cu and interface characterization, Journal of Manufacturing Science and Engineering, Vol. 136, No 5, p. 051002, 2014.
[20] T. Sapanathan, R. N. Raoelison, N. Buiron, and M. Rachik. In situ metallic porous structure formation due to ultra high heating and cooling rates during an electromagnetic pulse welding, Scripta Materialia, Vol 128, pp. 10-13, 2017.
[21] A. Stern, M. Aizenshtein, G. Moshe, S. Cohen, N. Frage, The nature of interfaces in Al-1050/Al-1050 and Al-1050/Mg-AZ31 couples joined by magnetic pulse welding (MPW), Journal of Materials Engineering and Performance, Vol. 22, No 7, pp. 2098-103, 2013.