مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

طراحی سیستم کنترل یکپارچه وضعیت و دمای ماهواره مجهز به عملگرهای مومنتوم سیالی

نویسندگان
1 دانشگاه صنعتی مالک اشتر
2 گروه مهندسی هوافضا، دانشکده مهندسی فناوریهای نوین، دانشگاه شهید بهشتی/دانشکده مهندسی هوافضا، دانشگاه صنعتی مالک اشتر
3 دانشگاه مالک اشتر
چکیده
هدف از این مقاله، طراحی یک سیستم کنترلی با الگوریتم از پیش طراحی شده برای مصالحه بین کنترل وضعیت و دمای ماهواره می‌باشد. بعد از زیرسیستم کنترل وضعیت، یکی از مهم‌ترین زیرسیستم‌های موجود در ماهواره‌ها، کنترل دما است. استفاده از یک مکانیزم موثر برای از بین بردن حرارت داخلی و یا تنش‌های حرارتی ناشی از طوفان-های خورشیدی در ماهواره‌ها امری ضروری است. در این مقاله از مکانیزم نوینی به نام عملگرهای مومنتوم سیالی استفاده شده است. در این عملگرها همزمان با تولید گشتاور، می‌توان از این چرخش سیالجهت خنک‌کاری نیز استفاده نمود. در این پژوهش فرض شده است، دمای داخلی ماهواره‌در طول ماموریتبه شرایط بحرانی رسیده و عملگرهای مومنتوم سیالی نیز نمی‌توانند دمای فعلی ماهواره را به میزان کافی کاهش دهند. در این حالت با استفاده از طراحی یک الگوریتم، وظیفهاین دو زیرسیستم با هم ترکیب می‌شود. بدین منظور، از یک مدل حرارتی برای به‌دست آوردن دمای شش صفحه ماهواره در هر گام زمانی استفاده شده وبا استفاده از یک الگوریتم سوئیچینگ به طراحی سیستم یکپارچه پرداخته شده است. این الگوریتم با یک منطق تصمیم گیری خاص، وظیفه مصالحه بین دو زیرسیستم را به عهده دارد. همچنین در این طراحی، از کنترلر مود لغزشی برای پایدارسازی سه محوره ماهواره استفاده شده است. نتایج حاصل از شبیه‌سازی‌ این سیستم یکپارچه کنترل وضعیت و دما، نشان می‌دهد که به کمک این الگوریتم می‌توان ضمن صرفه‌جویی در توان مصرفی و یکپارچه‌سازی این دو زیرسیستم، مدیریت دمایی مناسبی را طی یک ماموریت مداری اجرا نمود.
کلیدواژه‌ها

عنوان مقاله English

Design of Satellite’s Combined Attitude and Thermal Control System Equipped with FMC Actuators

نویسندگان English

Mehran Nosratolahi 1
Ahmad Soleymani 2
Hosein Sadati 3
1 Aerospace Faculty, MUT
2 Aerospace Engineering Department, Shahid Beheshti University
3 Malek Ashtar university of technology
چکیده English

The purpose of this paper is to design a control systwm with a pre-designed algorithm in order to reach a compromise between satellite attitude and thermal control systems. In addition to the indispensable attitude control system, a thermal control system (TCS) is regarded as a substantial subsystem in any given satellite. The latter is commonly used to effectively reduce the internal heat and/or the thermal tensions caused by solar radiations. In this paper, a novel actuators known as fluid momentum controllers (FMCs) have been utilized to simultaneously produce control torques and develop a cooling mechanism by circulating liquid through a ring. In this research, it has been assumed that the satellite’s internal temperature has reached a critical level to the extent that the FMCs are not able to reduce this temperature sufficiently. In such a case, it is possible to mitigate this problem using a combination of both attitude and thermal control subsystems (CATCS). To accomplish this, a thermal model has been employed to yield the temperature of all six sides of the satellite at each time step and a switching algorithm to design an integrated system. This algorithm uses a particular decision making logic to realize the reconciliation of the two subsystems. Also, a sliding mode controller has been used for the three axis stabilization of the satellite. Simulation results of the integrated attitude and thermal control system indicate that it is possible to conduct an appropriate temperature control while saving power and integrating the two subsystems.

کلیدواژه‌ها English

Combined Attitude and Thermal Control System (CATCS)
Switching Algorithm
Fluidic Momentum Controller (FMC)
Sliding mode control
Decision Making Logic
[1] R. S. Maynard, Fluid Momentum Control, U.S. Patent, 4,776,541, 1998.
[2] B. J. Lurie, J. A. Schier, Liquid-ring attitude-control system for spacecraft, NASA Tech Briefs, Vol. 14, No. 9, 1990.
[3] D. R. Laughlin, H. R. Sebesta, D. E. Ckelkamp-Baker, A dual function magnetohydrodynamic (MHD) device for angular motion measurement and control, Advances in the Astronautical Science, Vol. 111, pp. 335-348, 2002.
[4] A. C. Kelly, C. Mc Chesney, P. Z. Smith, S. Waltena, A performance test of a fluidic momentum controller in three axes, NASA Report, 2004.
[5] K. D. Kumar, Satellite attitude stabilization using fluid rings, Acta Mechanica, Vol. 208, pp. 117-131, 2009.
[6] Sh. Xiao-wei, Ch. Xue-qin, G. Yan-hai, Zh. Shi-jie, Small satellite attitude control based on mechanically-pumped fluid loops, 6 th IEEE Conference on Industrial Electronics and Applications, Beijing, China, June 21-23, 2011.
[7] R. Varatharajoo, R. Kahle, S. Fasoulas, Approach for combining spacecraft attitude and thermal control systems, Journal of Spacecraft and Rocket, Vol. 40, No. 5, pp. 657-664, 2003.
[8] S. B. Alkhodari, R. Varatharajoo, H2 and H∞ control options for the combined attitude and thermal control system (CATCS), Journal of Advances in Space Research, Vol. 43, pp. 1897-1903, 2009.
[9] N. A. Nobari, A. K. Misra, Satellite attitude stabilization using four fluid rings in a pyramidal configuration, AIAA/AAS Astrodynamics Specialist Conference, Toronto, Canada, August 2-5, 2010.
[10] N. A. Nobari, A. K. Misra, Attitude Dynamics and Control of Satellite with Fluid Ring Actuators, PhD Thesis, Department of Mechanical Engineering, McGill University, Canada, 2013.
[11] N. A. Nobari, A. K. Misra, Attitude dynamics and control of satellites with fluid ring actuators, Journal of Guidance, Control and Dynamics, Vol. 35, No. 6, pp. 1855-1864, Nov-Dec 2012.
[12] J. Tayebi, A. Soleymani, A comparative study of CMG and FMC actuators for nano satellite attitude control system - pyramidal configuration, 7th International Conference on Recent Advances in Space Technologies (IEEE), Istanbul, Turkey, June 16-19, 2015.
[13] S. R. Vadali, Variable-structure control of spacecraft large-angle maneuvers, Journal of Guidance, Control and Dynamics, Vol. 9, No. 2, pp. 235-239, 1986.
[14] T. A. W. Dwyer, H. Sira-RBmirez, Variable-structure control of spacecraft attitude maneuvers, The Journal of Guidance, Control and Dynamics, Vol. 11, No. 3, pp. 262-270, 1988.
[15] R. D. Roeinett, G. G. Parker, Least squares sliding mode control tracking of spacecraft large angle maneuvers, The Journal of the Astronautical Sciences, Vol. 45, No. 4, pp. 433-450, 1997.
[16] J. L. Crassidis, S. R. Vadali, F. L. Markley, Optimal variable-structure control tracking of spacecraft maneuvers, Journal of Guidance, Control and Dynamics, Vol. 23, No. 3, pp. 564-566, 2000.
[17] C. Binglong, L. Xiangdong, C. Zhen, Exponential time-varying sliding mode control for large angle attitude eigenaxis maneuver of rigid spacecraft, Chinese Journal of Aeronautics, Vol. 23, pp. 447-453, 2010.
[18] R. L. Akau, V. L. Behr, R. Whitaker, Thermal design of the fast-on-orbit recording of transient events (FORTE) satellite, 8th Annual AIAA/USU Conference on Small Satellites, Utah State University, USA, 1994.
[19] N. Sozbir, M. Bulut, M.F. Oktem, A. Kahriman, A. Chaix, Design of thermal control subsystem for TUSAT telecommunication satellite, World academy of science, engineering and technology, International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, Vol. 2, No. 7, pp. 1370-1373, 2008.
[20] G. Tsuyuki, D. Thunnissen, Margin determination in the design and development of a thermal control system, SAE Technical Paper, 2004-01- 2416, 2004.
[21] C. Struble, E. Bascaran, R.B. Bannerot, F. Mistree, Compromise: A multiobjective hierarchical approach to the design of spacecraft thermal control systems, ASME Computers in Engineering Conference, Anaheim, CA, USA, July 30-Augest 3, 1989.
[22] W. Cheng, N. LiuZhi, L. ZhongAiMing, W. ZhiMin, Z. ZongBo He, Application study of a correction method for a spacecraft thermal model with a monte-carlo hybrid algorithm, Chinese Science Bulletin, Vol. 56, No. 13, pp. 1407-1412, 2011.
[23] G. Charlotte, University nanosat system thermal design, analysis, and testing, SPIE Defense & Security Symposium, Orlando, Florida, USA, April 18-20, 2006.
[24] D. Roos, A. Diner, Thermal design analysis of a satellite with articulating solar panels, 1st Worldwide MSC Aerospace Users' Conference, Long Beach, CA, USA, June 7–10, 1999.
[25] K. Daryabeigi, Thermal analysis and design optimization of multilayer insulation for reentry aerodynamic heating, Journal of Spacecraft and Rockets, Vol. 39, No. 4, pp. 509-514, 2002.
[26] A. Corey Bolduc Chahe, Rapid thermal analysis of rigid three-dimensional bodies with the use of modelica physical modelling language, MSDL 2009 Summer Presentations for Canadian Space Agency, Department of Space Technologies, Quebec, Canada, 2009.
[27] A. Corey Bolduc Chahé, Rapid Thermal Analysis of Rigid ThreeDimensional Bodies with the Use of Modelica Physical Modelling Language, PhD Thesis, McConnell University, USA, 2009.
[28] G. Jose, G. Fernandez-Rico, Linear approach to the orbiting spacecraft thermal problem, Journal of Thermophysics and Heat Transfer, Vol. 26, No. 3, pp. 511-522, 2012.
[29] V. Chandrasekaran, E. R. Subramanian, Transient thermal analysis of a nanosatellite in low earth orbit, Proceedings of The Eighth International Conference on Engineering Computational Technology, Civil-Comp Press, Stirlingshire, UK, September 4-7, 2012.
[30] R. Katarzyna, K. Dariusz, Fuzzy TOPSIS method with ordered fuzzy numbers for flow control in a manufacturing system, Journal Applied Soft Computing, Vol. 52, Issue C, pp. 1020-1041, 2016.
[31] M. Sabaghi, M. Christian, Application of DOE-TOPSIS technique in decision-making problems, IFAC-Papers Online, Vol. 48, No. 3, pp. 773– 777, 2015.
[32] A. Hatami-Marbini, F. Kangi, An extension of fuzzy TOPSIS for a group decision making with an application to Tehran stock exchange, Applied Soft Computing, Vol. 52, pp. 1084-1097, 2016.
[33] G. T. Tumer, A novel multi attribute decision making approach for location decision under high uncertainty, Applied Soft Computing, Vol. 40, pp. 674- 682, 2016.
[34]B. Wie, Space Vehicle Dynamics and Control, pp. 180-196, Reston, Virginia, AIAA Education Series (AIAA Publisher), 1998.