مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

کنترل غیرخطی بهینه برای سیستم زیرفعال جرثقیل دو بعدی بر مبنای الگوریتم جستجوی هارمونی

نویسندگان
1 دانشکده مهندسی مکانیک و انرژی، دانشگاه شهید بهشتی
2 فارغ التحصیل
3 عضو هیات علمی، دانشگاه قم
چکیده
جرثقیل دوبعدی، یک سیستم زیر فعال است و از این رو مسئله کنترل چنین سیستم‌هایی تا حدودی پیچیده می‌باشد. در این مقاله به طراحی کنترل کننده‌های خطی سازی فیدبک جزئی و مود لغزشی برای یک سیستم جرثقیل کانتینر دو بعدی با طول کابل متغیر پرداخته شده است. از آنجایی که مدل دینامیکی سیستم بیان دقیقی از رفتار واقعی سیستم نیست و سیستم دارای عدم قطعیت می‌باشد، لذا کنترل کننده‌ای طراحی شده که تا حدودی اثرات عدم قطعیت مدل و اغتشاشات خارجی را کاهش داده و در مقابل این عوامل مقاوم باشد. از آنجا که سیستم مورد مطالعه، یک سیستم زیرفعال است، به منظور طراحی کنترل کننده، ابتدا دینامیک سیستم به دو بخش فعال و غیرفعال تفکیک و سپس، پایداری کنترل کننده‌های طراحی شده مورد بررسی قرار گرفته است. در ادامه، یک تابع هدف به صورت ترکیب معیار انتگرال خطا و نرخ تغییر سیگنال کنترلی در نظر گرفته شده است. تابع هدف معرفی شده، به کمک الگوریتم‌های جستجوی هارمونی و ازدحام ذرات، مینیمم شده و مقادیر بهینه برای پارامترهای کنترلی استخراج شده است، تا امکان مقایسه عملکرد کنترلرها در شرایط بهینه آنها فراهم شود. نتایج شبیه سازی، حاکی از عملکرد مناسب کنترل کننده‌های خطی سازی فیدبک جزئی و مود لغزشی بهینه شده به کمک الگوریتم جستجوی هارمونی در حضور عدم قطعیت پارامتری، اغتشاش خارجی متغیر با زمان، و نویز سنسورها می باشد.
کلیدواژه‌ها

عنوان مقاله English

Optimal Nonlinear Control for a 2D Under-Actuated Crane System Based on Harmony Search Algorithm

نویسندگان English

Ali Hadi 1
mahmood mazare 2
Mohammad Rasool Najafi 3
1 Faculty of Mechanical and Energy Engineering, Shahid Beheshti University
2 shahid beheshti university
3 Faculty member, University of Qom
چکیده English

Container crane is an under-actuated system, which is why it is much more difficult to control such systems. In this paper, partial feedback linearization and sliding mode controllers are employed to control a 2D container crane with varying cable length. Since, the dynamic model of the system cannot present the real one and the system contains some uncertainties, a controller is designed to reduce the effect of model uncertainties and external disturbances. Since the considered system is under-actuated, in order to design controller, first, dynamics of the system is divided into two parts, actuated and under-actuated. Then, stability of the controllers is discussed. An objective function is considered as the combination of integral of absolute error and rate of variation of control signal. The introduced objective function is minimized employing Harmony Search and particle swarm optimization algorithms and optimum values for parameters of the designed controllers are determined to make it possible to compare performance of the mentioned controllers in their optimum conditions. Simulation results show suitable performance of the designed controllers by harmony search algorithm for the 2D crane in the presence of mass uncertainty, actuator disturbances and sensor noises.

کلیدواژه‌ها English

2D container crane
Under-actuated system
Partial feedback linearization
Sliding mode
Harmony search
[1] A. Benhidjeb, G. Gissinger, Fuzzy control of an overhead crane performance comparison with classic control, Control Engineering Practice, Vol. 3, No. 12, pp. 1687-1696, 1995.
[2] C. Y. Chang, The switching algorithm for the control of overhead crane, Neural Computing & Applications, Vol. 15, No. 3-4, pp. 350-358, 2006.
[3] J. Yi, N. Yubazaki, K. Hirota, Anti-swing and positioning control of overhead traveling crane, Information Sciences, Vol. 155, No. 1, pp. 19-42, 2003.
[4] Y. Hakamada, M. Nomura, Anti-sway and position control of crane system, Advanced Motion Control, AMC'96-MIE Proceedings, 1996 4th International Workshop on, pp. 657-662, 1996.
[5] Y. S. Kim, H. S. Seo, S. K. Sul, A new anti-sway control scheme for trolley crane system, Industry Applications Conference, Thirty-Sixth IAS Annual Meeting. Conference Record of the 2001 IEEE, pp. 548-552, 2001.
[6] G. Hilhorst, G. Pipeleers, W. Michiels, R. C. Oliveira, P. L. Peres, J. Swevers, Fixed-Order linear parameter-varying feedback control of a labscale overhead crane, IEEE Transactions on Control Systems Technology, pp. 1899-1907, 2016.
[7] G. Bartolini, A. Pisano, E. Usai, Second-order sliding-mode control of container cranes, Automatica, Vol. 38, No. 10, pp. 1783-1790, 2002.
[8] H. H. Lee, Y. Liang, D. Segura, A sliding-mode antiswing trajectory control for overhead cranes with high-speed load hoisting, Journal of Dynamic Systems, Measurement, and Control, Vol. 128, No. 4, pp. 842-845, 2006.
[9] Q. Ngo, K.-S. Hong, Adaptive sliding mode control of container cranes, IET Control Theory & Applications, Vol. 6, No. 5, pp. 662-668, 2012.
[10] H. M. Omar, A. H. Nayfeh, Gantry cranes gain scheduling feedback control with friction compensation, Journal of Sound and Vibration, Vol. 281, No. 1, pp. 1-20, 2005.
[11] T. A. Le, S. G. Lee, S. C. Moon, Partial feedback linearization and sliding mode techniques for 2D crane control, Transactions of the Institute of Measurement and Control, Vol. 36, No. 1, pp. 78-87, 2014.
[12] H. Park, D. Chwa, K. Hong, A feedback linearization control of container cranes: Varying rope length, International Journal of Control Automation and Systems, Vol. 5, No. 4, pp. 379, 2007.
[13] J. J. E. Slotine, W. Li, Applied Nonlinear Control, prentice-Hall Englewood Cliffs, NJ, New Jersey, pp. 280, 1991.
[14] J. Kennedy, R. C. Eberhart, Particle swarm optimizer, Proceeding of IEEE International Conference on Neural Networks, pp. 1942-1948, 1995.
[15] M. Mazare, M. R. Najafi, Adaptive control of a 3-PUU parallel robot on optimized trajectories generated by harmony search algorithm, Modares Mechanical Engineering, Vol. 16, No. 11, pp. 187-198, 2016. (in (فارسی Persian