مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

تخمین میزان شاخص چاه‌ برداشت نفت در مخازن هیدروکربنی به کمک دینامیک سیالات محاسباتی

نویسندگان
1 گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه اصفهان، اصفهان، ایران
2 هیئت علمی-دانشگاه اصفهان
3 استادیار دانشگاه اصفهان
چکیده
در کار حاضر، جریان سیال درون یک بلوک از مخزن هیدروکربنی و جریان سیال درون حفره چاه برداشت حفاری شده در این بلوک مخزن به صورت سه بعدی شبیه‌سازی شده است. برای این منظور، جریان سیال تک فاز تراکم‌ناپذیر درون مخزن هیدروکربنی بر مبنای قانون دارسی (جریان درون محیط متخلخل) و جریان سیال درون حفره چاه بر مبنای معادله ناویر-استوکس (جریان آزاد) به صورت همزمان حل شده است. اثرات مربوط به شرایط مرزی اعمال شده روی وجوه بلوک مخزن، میزان خارج از مرکز بودن محل حفاری چاه عمودی درون بلوک مخزن و تراوایی مطلق سنگ مخزن روی رفتار جریان سیال بررسی شده است. در هر مورد، مقدار شاخص چاه به صورت عددی و با استفاده از توزیع فشار و سرعت جریان سیال درون بلوک مخزن و فشار سیال در حفره چاه تخمین زده شده و با مقادیر تحلیلی مقایسه شده است. نتایج عددی نشان می‌دهد که علاوه بر مشخصات هندسی چاه و بلوک مخزن و جنس سنگ مخزن، نوع شرط مرزی اعمال شده روی وجوه بلوک، میزان خارج از مرکز بودن محل حفاری چاه روی شعاع موثر چاه و همچنین شاخص چاه تاثیرگذار هستند.
کلیدواژه‌ها

عنوان مقاله English

Approximation of Oil Production Well Index in Hydrocarbon Reservoirs Using Computational Fluid Dynamics

نویسندگان English

Saeed Hayati jafarbeigi 1
Mehdi Mosharaf Dehkordi 2
Masoud Ziaei-Rad 3
1 Mechanical engineering department, faculty of engineering, university of Isfahan Isfahan, Iran
2 Faculty member
3 عضو هیات علمی
چکیده English

In the present work, the three dimensional fluid flow inside a hydrocarbon reservoir block along with the fluid flow inside the wellbore of a production well drilled in this reservoir block is numerically simulated. To do this, the single-phase incompressible fluid flow in the hydrocarbon reservoir in terms of Darcy’s law (porous media flow) along with the fluid flow inside the wellbore in terms of Navier-Stokes equations (free flow) are simultaneously solved. The effects of boundary conditions imposed on the faces of the reservoir block, the off-centered wellbore, and the reservoir rock permeability on the fluid flow behavior inside a reservoir block are investigated. In each case, the well index is numerically approximated, using the pressure and velocity distributions in the reservoir block and the wellbore pressure, and compared with analytical well index. The numerical results indicate that the well equivalent radius and also the well index not only depend on the geometrical properties of reservoir block and well bore and the rock absolute permeability, but also depend on the boundary conditions imposed on the reservoir block faces and the well drilling location.

کلیدواژه‌ها English

Hydrocarbon reservoir
Vertical production well
Well index
Computational Fluid Dynamics
[1] Z. Chen, G. Huan, Y. Ma, Computational Methods for Multiphase Flows in Porous Media, pp. 285-290, Philadelphia: Society for Industrial and Applied Mathematics, 2006.
[2] Z. Chen, Y. Zhang, Well flow models for various numerical methods, International Journal of Numerical Analysis and Modeling, Vol. 6, No. 3, pp. 375-388, 2009.
[3] D. W. Peaceman, Interpretation of Well-block pressures in numerical reservoir simulation, Society of Petroleum Engineers Journal, Vol. 18, No. 3, pp. 1-17, 1978.
[4] D. W. Peaceman, Interpretation of Well-block pressures in numerical reservoir simulation with Non-square grid blocks and anisotropic permeability, Society of Petroleum Engineers Journal, Vol. 23, No. 1, pp. 531-543, 1983.
[5] C. Wolfsteiner, J. Durlofsky, Kh. Aziz, Calculation of well index for Nonconventional wells on arbitrary grids, Computational Geosciences, Vol. 7, No. 1, pp. 61-82, 2003.
[6] C. L. Palagi, Kh. Azlz, Modeling vertical and horizontal wells with voronoy grid, Society of Petroleum Engineers Journal (SPE-26301-MS), Vol. 1, No. 1, pp.1-8, 1994.
[7] Ch. Wolfsteiner, J. Durlofsky, Kh. Aziz, Approximate model for productivity of nonconventional wells in heterogeneous reservoirs, Society of Petroleum Engineers Journal, Vol. 5, No. 2, pp. 218–226, 2000.
[8] Ch. Wolfsteiner, J. Durlofsky, Kh. Aziz, Efficient estimation of the effects of wellbore hydraulics and reservoir heterogeneity on the productivity of nonconventional wells, SPE Asia Pacific Conference on Integrated Modelling for Asset Management, Yokohama, Japan, 25-26 April, 2000
[9] M. Byrne, M. A. Jimenez, J. C. Chavez, Predicting well inflow using computational fluid dynamics-closer to the truth?, Society of Petroleum Engineers Journal (SPE-122351-MS), Vol. 2, No. 1, pp. 1-9, 2009.
[10] M. Byrne, M. A. Jimenez, E. A. Rojas, J. C. Chavez, Modeling well inflow potential in three dimensions using computational fluid dynamics, SPE International Symposium and Exhibition on Formation Damage Control, Lafayette, Louisiana, USA, 10-12 February, 2010.
[11] M. Byrne, M. A. Jimenez, E. A. Rojas, E. Castillo, Computational fluid dynamics for reservoir and well fluid flow performance modelling, Society of Petroleum Engineers Journal, SPE-144130-MS, Vol. 2, No. 1, pp. 1-7, 2011.
[12] O. Molina, Analysis of production rates of a gas well using computational fluid dynamics and rate-dependent pseudo-skin factor, Society of Petroleum Engineers Journal (SPE-184497-STU), Vol. 2, No. 1, pp. 1-14, 2016.
[13] O. Molina, M. Tyagi, Computational fluid dynamics approach to predict pressure drop and flow behavior in the near wellbore region of a frac-packed gas well, ASME, International Conference on Offshore Mechanics and Arctic Engineering, Volume 10: Petroleum Technology, 2015.
[14] M. L. Szanyi, C. S. Hemmingsen, W. Yan, J. H. Walther, S. L. Glimberg, Near-wellbore modeling of a horizontal well with computational fluid dynamics, Journal of Petroleum Science and Engineering, Vol. 160, No. 1, pp. 119-128, 2018.
[15] M. Mosharaf-Dehkordi, M. T. Manzari, H. Ghafouri, R. Fatehi, A general finite volume based numerical algorithm for hydrocarbon reservoir simulation using blackoil model, International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 24, No. 8, pp. 1831-1863, 2014.
[16] M. Azadi, S. M. Aminossadati, Z. Chen, Large-scale study of the effect of wellbore geometry on integrated reservoir-wellbore flow, Journal of Natural Gas Science and Engineering, Vol. 35, No. 1, pp. 320-330, 2016.
[17] H. Asheim, J. Kolnes, P. Oudeman, A flow resistance correlation for completed wellbore, Journal of Petroleum Science and Engineering, Vol. 8, No. 2, pp.97-104, 1992.
[18] L. B. Ouyang, S. Arbabi, K. Aziz, General wellbore flow model for horizontal, vertical, and slanted well completions, Society of Petroleum Engineers Journal, Vol. 3, No. 2, pp.124-133, 1998.
[19] M. Azadi, S. M. Aminossadati, Z. Chen, Development of an integrated reservoir-wellbore model to examine the hydrodynamic behavior of perforated pipes, Journal of Petroleum Science and Engineering, Vol. 156, No.1, pp. 269-281, 2017.
[20] Ansys. Fluent 12, Theory Guide, Ansys Inc, New York, USA, 2009.
[21] H. J. Su, Modeling of Off-Center wells in reservoir simulation, Society of Petroleum Engineers Journal, Vol. 10, No. 1, pp. 176-181,1995
[22] S. D. Joshi, Horizontal Well Technology, pp. 203-211, Oklahoma: Penn Well Publishing Company, 1991.