مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

طراحی و شبیه سازی کنترل‌کننده مود لغزشی ترمینالی پسگام غیرتکین و فیلتر کالمن توسعه‌یافته برای کوادروتور

نویسندگان
1 مهندسی مکانیک، دانشکده مهندسی مکانیک تبریز
2 استادیار- دانشکده برق و کامپیوتر دانشگاه تهران-آزمایشگاه تعامل انسان و ربات
3 گروه مهندسی هوافضا، دانشکده مهندسی مکانیک و هوافضا، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران
4 مرکز تحقیقات هواپیمایی ناجا، تهران، ایران
چکیده
در این مقاله با استفاده از روش مود لغزشی ترمینالی پسگام غیر تکین به کنترل پرنده بدون سرنشین (کوادروتور) پرداخته‌شده است. در مرحله اول معادلات دینامیکی حاکم بر کوادروتور با در نظر گرفتن همه پارامترهای مؤثر به‌دست‌آمده‌اند. هدف کنترل‌کننده دستیابی به ردیابی مناسب از موقعیت‌های مطلوب (x، y، z) و زاویه یاو (𝜓) و همچنین حفظ پایداری زوایای رول و پیچ به‌رغم وجود اغتشاشات خارجی محدود می باشد. روش‌های کنترلی به اطلاعات کامل از حالت‌های سیستم نیاز دارند که در عمل ممکن است امکان استفاده از آن‌ها محدود شود. حتی اگر تمام حالات سیستم در دسترس باشد همراه نویز بوده و همچنین استفاده زیاد از سنسورها برای اندازه‌گیری حالات، کل سیستم را در اجرا پیچیده و گران می‌کند. لذا برای این منظور از فیلتر کالمن توسعه‌یافته (EKF) به‌عنوان رؤیت گر استفاده‌شده است. فیلتر کالمن توسعه‌یافته به‌عنوان رؤیت گر سرعت و تخمین گر اغتشاشات خارجی مانند باد به کار می‌رود به همین علت استفاده از کنترل‌کننده رؤیت گر برای تخمین اثرات اغتشاشات خارجی به‌منظور جبران آن‌ها پیشنهادشده است. روش طراحی بر پایه پایداری لیاپانوف استوار است. نتایج شبیه‌سازی نشان‌دهنده عملکرد و مقاوم بودن خوب رؤیت گر کنترل‌کننده است.
کلیدواژه‌ها

عنوان مقاله English

Design And Simulation Non-Singular Backstepping Terminal Sliding Mode Control And Extended Kalman Filter For Quadrotor

نویسندگان English

Javad Faraji 1
Mehdi Tale Masouleh 2
Mostafa Saket 3
Mojtaba Radseresht 4
1 Mechanical Engineering, Tabriz of university
3 Department of Mechanical and Aerospace Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
4 NAJA Airplanes Research Center, Tehran, Iran
چکیده English

In this paper, we used a non-singular backstepping terminal sliding mode control approach to the unmanned aerial vehicle (quadrotor). In the first step, the governing dynamical equations were obtained based on the quadrotor considering all the effective parameters. The controller objective is limited to obtaining proper tracking of the desired positions (x, y, z) and the yaw angle (ψ), as well as maintaining the stability of the roll and pitch angles despite the presence of external disturbances. Controlling methods require complete information about system states that may be limited in practice. Even if all system conditions are available, it is interfered by noise, and also large number of applier sensors to measure states, makes the entire system more complex and costly. For this purpose, the Extended Kalman Filter (EKF) has been used as an observer. The extended Kalman filter is used as a speed observer and estimator of external disturbances such as wind force. Therefore, the use of a controller-observer is suggested to estimate the effects of external disturbances in order to compensate for them. The design method is based on the stability of Lyapunov. Simulation results show the promising performance and suitability of the observer-controller.

کلیدواژه‌ها English

Non-Singular Terminal Sliding Mode Control
Backstepping
Extended Kalman Filter
Quadrotor
[1] G. M. Hoffmann, H. Huang, S. L. Waslander, C. J. Tomlin, Quadrotor helicopter flight dynamics and control: Theory and experiment, Proceedings of The AIAA Guidance, Navigation, and Control Conference, hilton head, south carolina, USA, August 20-23, 2007.
[2] E. Altug, J. P. Ostrowski, R. Mahony, Control of a quadrotor helicopter using visual feedback, Proceedings of The IEEE International Conference On Robotics and Automation, Washington, DC, USA, May 11-15, 2002.
[3] S. Bouabdallah, A. Noth, R. Siegwart, PID vs LQ control techniques applied to an indoor micro quadrotor, Proceedings of The Intelligent Robots and Systems, Sendai, Japan, 28 September-2 October, 2004.
[4] S. Bouabdallah, R. Siegwart, Backstepping and sliding-mode techniques applied to an indoor micro quadrotor, Proceedings of The IEEE international conference on robotics and automation, Barcelona, Spain, April 18-22, 2005.
[5] T. Madani, A. Benallegue, Backstepping control for a quadrotor helicopter, Proceedings of The International Conference on Intelligent Robots and Systems, Beijing, China, October 9-15, 2006.
[6] T. Madani, A. Benallegue, Backstepping sliding mode control applied to a miniature quadrotor flying robot, Proceedings of The 32nd Annual Conference on IEEE Industrial Electronics, Paris, France, November 6-10, 2006.
[7] A. Benallegue, A. Mokhtari, L. Fridman, Feedback linearization and high order sliding mode observer for a quadrotor UAV, Proceedings of The International Workshop on Variable Structure Systems, Alghero, Italy, June 5-7, 2006.
[8] A. Benallegue, A. Mokhtari, L. Fridman, High‐order sliding‐mode observer for a quadrotor UAV, International Journal of Robust and Nonlinear Control, Vol. 18, No. 4-5, pp. 427-440, 2008.
[9] T. Madani, A. Benallegue, Sliding mode observer and backstepping control for a quadrotor unmanned aerial vehicles, Proceedings of The American Control Conference, New York, USA, July 9-13, 2007.
[10] T. Madani, A. Benallegue, Backstepping control with exact 2-sliding mode estimation for a quadrotor unmanned aerial vehicle, Proceedings of The International Conference on Intelligent Robots and Systems, San Diego, USA, 29 October -2 November, 2007.
[11] S. Bouabdallah, R. Siegwart, Full control of a quadrotor, Proceedings of The International Conference on Intelligent Robots and Systems, San Diego, USA, 29 October -2 November, 2007.
[12] A. A. Mian, W. Daobo, Modeling and backstepping-based nonlinear control strategy for a 6 DOF quadrotor helicopter, Chinese Journal of Aeronautics, Vol. 21, No. 3, pp. 261-268, 2008.
[13] M. Bouchoucha, S. Seghour, H. Osmani, M. Bouri, Integral backstepping for attitude tracking of a quadrotor system, Elektronika ir Elektrotechnika, Vol. 116, No. 10, pp. 75-80, 2011.
[14] S. Zeghlache, D. Saigaa, K. Kara, A. Harrag, A. Bouguerra, Backstepping sliding mode controller improved with fuzzy logic: Application to the quadrotor helicopter, Archives of Control Sciences, Vol. 22, No. 3, pp. 315- 342, 2012.
[15] L. Derafa, A. Benallegue, L. Fridman, Super twisting control algorithm for the attitude tracking of a four rotors UAV, Journal of the Franklin Institute, Vol. 349, No. 2, pp. 685-699, 2012.
[16] Y. Li, S. Song, A survey of control algorithms for quadrotor unmanned helicopter, Proceedings of The IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI), Nanjing, China, October 18- 20, 2012.
[17] H. Khebbache, M. Tadjine, Robust fuzzy backstepping sliding mode controller for a quadrotor unmanned aerial vehicle, Journal of Control Engineering and Applied Informatics, Vol. 15, No. 2, pp. 3-11, 2013.
[18] H. Ramirez-Rodriguez, V. Parra-Vega, A. Sanchez, O. Garcia, Integral sliding mode backstepping control of quadrotors for robust position tracking, Proceedings of The International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, USA, May 28-31, 2013.
[19] J. J. Xiong, E. H. Zheng, Position and attitude tracking control for a quadrotor UAV, ISA Transactions, Vol. 53, No. 3, pp. 725-731, 2014.
[20] E. Davoodi, M. Rezaei, Dynamic modeling, simulation and control of a quadrotor using MEMS sensors’ experimental data, Modares Mechanical Engineering, Vol. 14, No. 3, pp. 175-184, 2014. (In Persian فارسی(
[21] D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches, pp. 395-409, Hoboken: John Wiley & Sons, 2006.
[22] R. Olfati-Saber, Nonlinear Control of Underactuated Mechanical Systems with Application to Robotics and Aerospace Vehicles, PhD Thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, USA, 2000.
[23] R. Babaei, A. F. Ehyaei, Robust backstepping control of a quadrotor uav using extended kalman bucy filter, International Journal of Mechatronics, Electrical and Computer Technology (IJMEC), Vol. 5, No. 16, pp. 2276- 2291, 2015.
[24] L. Besnard, Y. B. Shtessel, B. Landrum, Quadrotor vehicle control via sliding mode controller driven by sliding mode disturbance observer, Journal of the Franklin Institute, Vol. 349, No. 2, pp. 658-684, 2012
[25] M. Zhihong, A. P. Paplinski, H. R. Wu, A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators, IEEE Transactions on Automatic Control, Vol. 39, No. 12, pp. 2464-2469, 1994.
[26] N. Adhikary, C. Mahanta, Integral backstepping sliding mode control for underactuated systems: Swing-up and stabilization of the Cart–Pendulum System, ISA Transactions, Vol. 52, No. 6, pp. 870-880, 2013.
[27] M. Xin, J. Fei, Adaptive vibration control for MEMS vibratory gyroscope using backstepping sliding mode control, Journal of Vibration and Control, Vol. 21, No. 4, pp. 808-817, 2015.
[28] X. Yu, M. Zhihong, Fast terminal sliding-mode control design for nonlinear dynamical systems, IEEE Transaction on Circuits and Systems I: Fundemental Theory and Applications, Vol. 49, No. 2, pp. 261-264, 2002.
[29] Y. Feng, X. Yu, Z. Man, Non-singular terminal sliding mode control of rigid manipulators, Automatica, Vol. 38, No. 12, pp. 2159-2167, 2002.