مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

ارائه روابط تجربی برای تعیین تعداد اضلاع پرش های هیدرولیکی چندضلعی

نویسندگان
1 دانشکده مهندسی مکانیک، دانشگاه فردوسی مشهد، مشهد
2 استاد-دانشگاه فردوسی مشهد
3 استاد هیات علمی-دانشگاه فردوسی مشهد
چکیده
به‌ طور معمول از برخورد جت مایع عمودی به یک صفحه‌ی صاف افقی، پرش هیدرولیکی دایروی تشکیل می‌شود. با این وجود، در شرایط خاصی که متأثر از عواملی مانند لزجت سیال، دبی حجمی، قطر جت و ارتفاع سیال در پایین‌دست پرش می‌باشد، تغییر جریان از حالت فوق بحرانی به زیربحرانی از ظاهر دایروی خود خارج شده و به‌صورت چندضلعی نمایان می‌گردد. باوجود گذشت نزدیک به دو دهه از مشاهده پدیده پرش هیدرولیکی چندضلعی، تاکنون رابطه‌ی تجربی برای تخمین تعداد اضلاع پرش‌های هیدرولیکی چند ضلعی برحسب پارامترهای مختلف ارائه نگردیده است. اندازه و تعداد اضلاع پرش‌های هیدرولیکی چندضلعی به عوامل مختلفی مانند دبی حجمی سیال، قطر جت، ارتفاع سیال در پایین‌دست پرش و خواص فیزیکی سیال و به عبارتی به اعداد بدون بعد رینولدز، وبر و باند بستگی دارند. ازاین‌رو در این پژوهش با استفاده از روش طراحی آزمایشات به کمک تحلیل تاگوچی به بررسی آزمایشگاهی اثرات دبی حجمی سیال، قطر جت و ارتفاع مانع در پایین‌دست پرش بر تعداد اضلاع پرش‌های هیدرولیکی چندضلعی پرداخته شده و دو رابطه‌ی خطی و غیرخطی برای تخمین تعداد اضلاع پرش‌های هیدرولیکی چندضلعی برحسب پارامترهای مذکور ارائه می‌گردد.
کلیدواژه‌ها

عنوان مقاله English

Proposal of Experimental Relations for Determining the Number of Sides of Polygonal Hydraulic Jumps

نویسندگان English

Ehsan Soukhtanlou 1
Ali Reza Teymourtash 2
Mohammad Reza Mahpeykar 3
1 Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad,Iran
3 Professor- FUM
چکیده English

The circular hydraulic jump usually forms when a liquid jet impinges on a horizontal flat plate. However, under certain conditions of fluid viscosity, volume flow rate and obstacle height downstream of the jump, the flow changes from super-critical to sub-critical and hydraulic jump changes shape from circular to polygonal. Despite the phenomenon of the hydraulic polygon jump has observed about two decades, the experimental relationship has not been presented to estimate the number of sides of hydraulic polygon jumps. The size and number of sides of a polygonal hydraulic jump depend on various factors such as fluid volume flow rate, jet diameter, fluid height downstream of the jump, and fluid physical properties; in other words, they depend on the dimensionless numbers of Reynolds, Weber, and Bond. Hence, in this study Taguchi analysis, as a Design of Experiment method, was used to investigate the effect of volume flow rate, jet diameter and obstacle height downstream of the jump on the number of the sides of a polygon hydraulic jump and Linear and nonlinear relationships was proposed for estimating the number of the sides of a polygonal hydraulic jump in terms of the above mentioned parameters.

کلیدواژه‌ها English

Polygonal hydraulic jump
Design of Experiments by Taguchi method
least square method
[1] R. S. Bunker, Gas turbine heat transfer: Ten remaining hot gas path challenges, Journal of Turbomachinery, Vol. 129, No. 2, pp. 193-201, 2007.
[2] H. W. Glover, T. Brass, R. K. Bhagat, J. F. Davidson, L. Pratt, D. I. Wilson, Clining of complex soil layers on vertical walls by fixed and moving impinging liquid jets, Journal of Food Engeering, Vol. 178, No.1, pp. 95- 109, 2016.
[3] C. Ellegard, A. E. Hansen, A. Haaning, T. Bohr, Experimental results on flow separation and transition in the circular hydraulic jump, Physica Scripta, Vol. 67, No. 8, pp. 105-110, 1996.
[4] C. Ellegard, A. E. Hansen, A. Haaning, K. Hansen, A. Marcussen, T. Bohr, J. L. Hansen, S. Watanabe, Creating corners in kitchen sinks, Nature, Vol. 392, No. 6678, pp. 767-768, 1998.
[5] J. Bush, J. Aristoff, A. E. Hosoi, An experimental investigation of the stability of the circular hydraulic jump, Journal of Fluid Mechanics, Vol. 558, No.1, pp. 33-52, 2005.
[6] E. Dressaire, L. Courbin, J. Crest, H. A. Stone, Thin-Film fluid flows over microdecorated surface: Observation of polygonal hydraulic jumps, Physical Review Letters, Vol. 102, No.1, pp. 1945031-4, 2009.
[7] A. R. Kasimov, A stationary circular hydraulic jump, the limits of its existence and its gasdynamic analogue, Journal of Fluid Mechanics, Vol. 601, No.1, pp. 189-198, 2008.
[8] H. Zobeyer, N. Rajaratnam, D. Z. Zhu, Radial jet and hydraulic jump in a circular basin, Journal of Engineering Mechanics, Vol. 140, No. 1, pp. 128- 133, 2014.
[9] Y. Brechet, Z. N´eda, On the circular hydraulic jump, American Journal of Apahysics, Vol. 67, No. 8, pp. 723–731, 1999.
[10] E. A. Eyo, E. E. Joshua, P. J. Udoh, Two dimensional laminar flow of a liquid with circular hydraulic jump, Modern Applied Science, Vol. 5, No. 3, pp. 56-68, 2011.
[11] E. A. Martens, S. J. Watanabe, T. Bohr, Model for polygon hydraulic jump, Physical Review E, Vol. 85, No.1, pp. 0363161-14, 2012.
[12] M. Mokhlesi, A. R. Teymouratsh, Experimental Investigation of the effect of flow rate, depht of downwar and jet diameter of polygonal Hydraulic Jumps, Journal of Mechanich Engineering, Vol. 62, No. 2, pp. 69-89, 2013. (In (فارسی Persian
[13] A. R. Teymouratsh, M. Mokhlesi, Experimental investigation of stationary and rotational structures in Non-circural hydraulic jumps, Journal of Fluid Mechanics, Vol. 762, No.1, pp. 344-360. 2015.
[14] E. J. Watson, The radial spread of a liquid jet over a horizontal plane, Journal of Fluid Mechanic, Vol. 20, No.1, pp. 481-499, 1964.
[15] J. W. M. Bush, J. M. Aristoff, The influence of surface tension on the circular hydraulic jump, Journal of Fluid Mechanic, Vol. 489, No. 1, pp. 229–238, 2003.
[16] M. Passandideh-Fard, A. R. Teymourtash, M. Khavari, Numerical study of cylinder hydraulic jump using volume-of-fluid method, Journal of Fluids Engineering, Vol. 133, No. 1, pp. 566-570, 2011.