مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

تخمین برخط دمای سیم آلیاژ حافظه دار به کمک فیلتر کالمن توسعه یافته

نویسندگان
1 دانشکده مهندسی مکانیک، دانشگاه یزد
2 عضو هیات علمی دانشگاه تهران
چکیده
برای کنترل عملگرهای هوشمند دارای آلیاژ حافظه دار، لازم است متغیرهای حالت این عملگرها اندازه گیری یا تخمین زده شوند تا در حلقه کنترل به عنوان بازخورد استفاده شوند. دمای سیم یکی از این متغیرهای حالت است که اندازه گیری آن بسیار سخت بوده و با تاخیر و نویز زیادی همراه است. از این رو، تلاشهای بسیاری برای تخمین این متغیر صورت گرفته است. مدل ترموالکتریک یکی از پرکاربردترین مدل هایی است که در آن با داشتن جریان سیم، دمای سیم محاسبه می شود. در این مقاله، ابتدا سه پارامتر مدل ترموالکتریک به صورت همزمان به کمک فیلتر کالمن توسعه یافته تخمین زده شده و دمای سیم به کمک مدل شناسایی شده، محاسبه می شود. تخمین پارامترها و محاسبه دما روی یک عملگر واقعی آلیاژ حافظه دار انجام می شود. در ادامه برای حذف تاثیر اغتشاشات محیطی و خطاهای مدل ترموالکتریک، دمای سیم توسط فیلتر کالمن توسعه یافته تخمین زده شده است. در این روش از دو مدل ترموالکتریک و برینسون برای پیش بینی متغیرها و از داده های قابل اندازه گیری مانند جریان، تنش و کرنش سیم آلیاژ حافظه دار، برای به روزرسانی تخمین ها استفاده می شود. این روش برای تخمین برخط دمای سیم آلیاژ حافظه دار روی یک عملگر آلیاژ حافظه دار ساخته شده مورد استفاده قرار می گیرد. بررسی نتایج این تخمین نشان دهنده انطباق بالای دمای تخمین زده شده با دمای واقعی سیم است. همچنین نتایج این تخمین دقیق تر از حالتی است که از مدل ترموالکتریک به تنهایی برای محاسبه دما استفاده شود.
کلیدواژه‌ها

عنوان مقاله English

Online Estimation of the Temperature of Shape Memory Alloy Wire Using Extended Kalman Filter

نویسندگان English

Mohsen Soltani 1
S. Mohammad Bozorg 1
Mohammad Reza Zakerzadeh 2
1 Dept. of Mechanical Eng.,Yazd University
2 Dept of Mechanical Eng., University of Tehran
چکیده English

In order to use and control Shape Memory Alloy (SMA) actuators, it is essential to measure its state variables to be used as the feedback in the control loop. The wire temperature is one of critical state variables need to be fed back. However, measuring this variable is difficult and usually contains some noises and delay. Therefore, it is desirable to estimate this variable instead of measuring it. Thermoelectric model is one of the most common models used to estimate the SMA wire temperature. This model calculates the SMA wire temperature based on its input electric current. In this paper, first three unknown parameters of thermoelectric model are estimated using Extended Kalman filter (EKF) and the wire temperature is calculated based on the identified model. The parameter estimation and temperature calculation are performed on a practical SMA actuator. Then, in order to eliminate the effects of environmental disturbances and the thermoelectric model inaccuracies, the temperature is estimated using EKF. In this method, all measurable data such as the input current, the strain and stress of the SMA wire are used in the temperature estimation. The estimator combines the information obtained from both thermoelectric and Brinson models and the measurement data. This method is used for online temperature estimation of the SMA wire on a practical SMA actuator. The results show that the estimated temperature matches the actual wire temperature with high precision. Furthermore, the temperature estimation using EKF is more accurate than the estimates of the thermoelectric model.

کلیدواژه‌ها English

Shape memory alloys
Thermoelectric Model
State Estimation
Extended Kalman Filter
[1] L. Lecce, A. Concilio, Shape Memory Alloy Engineering: For Aerospace, Structural and Biomedical Applications, pp 8-13,USA, MA: Elsevier, 2014.
[2] A. Eisakhani, W. Ma, J. Gao, R. Culham, R. Gorbet, Natural convection heat transfer modelling of shape memory alloy wire, in Smart Materials, Structures & NDT in Aerospace, Monreal, Canada, 2011.
[3] H. Sayyaadi, M. R. Zakerzadeh, H. Salehi, A comparative analysis of some one-dimensional shape memory alloy constitutive models based on experimental tests, Scientia Iranica, Vol. 19, No. 2, pp. 249-257, 2012.
[4] A. Khan, Characterization and Application of Shape Memory Alloy Wires for Micro and Meso Positioning Systems, PHD Thesis, The school of engineering and applied science, George Washington Univ., Washington, 2008.
[5] M. H. Elahinia, M. Ahmadian, Design of a kalman filter for rotary shape memory alloy actuators, Smart Materials and Structure, Vol. 13, No. 4, pp. 691-697, 2004.
[6] H. Gurung, A. Banerjee, Development of an extended kalman filter for the self-sensing application of a spring-biased shape memory alloy wire actuator, Smart Materials and Structure, Vol. 25, No. 2, pp. 1-13, 2016.
[7] H. Gurung, A. Banerjee, Self-Sensing shape memory alloy wire actuator based on unscented kalman filter, Sensors and Actuators A Physical, Vol. 251, No. 1, pp. 258-265, 2016.
[8] I. Hassanzadeh, N. Nikdel, N. T. Motlagh, M. A. Badamchizadeh, Design of augmented EKF for shape memory alloy actuated manipulator, Engineering Science and Technology, Vol. 2, No. 7, pp. 3188-3198, 2010.
[9] T. M. Wang, Z. Y. Shi, D. Liu, C. Ma, Z. H. Zhang, An accurately controlled antagonistic shape memory alloy actuator with self-sensing, Sensors, Vol. 12, No. 6, pp. 7682-7700, 2012.
[10] M. R. Zakerzadeh, H. Salehi, H. Sayyaadi, Modeling of a nonlinear eulerbernoulli flexible beam actuated by two active shape memory alloy actuators, Intelligent Material Systems and Structures, Vol. 22, No. 11, pp. 1249-1268, 2011.
[11] L. C. Brinson, A. Bekker, S. Hwang, Deformation of shape memory alloys due to thermal induced transformation, Intelligent Material Systems and Structures, Vol. 7, No. 1, pp. 97-107, 1996.
[12] J. J. Amalraj, A. Bhattacharyya, M. G. Faulkner, Finite-Element modeling of phase transformation in shape memory alloy wires with variable material properties, Smart Materials and Structures, Vol. 9, No. 5, pp. 622-631, 2000.
[13] A. Eisakhani, Electrical Resistance and Natural Convection Heat Transfer Modeling of Shape Memory Alloy Wires, Master of applied science Thesis, Dept. of Mechanical & Mechatronics Engineering, Waterloo, Ontario, 2012.
[14] R. Mirzaeifar, R. DesRoches, A. Yavari, Analysis of the rate-dependent coupled thermo-mechanical response of shape memory alloy bars and wires in tension, Continuum Mechanics and Thermodynamics, Vol. 23, No. 4, pp. 363-385, 2011.
[15] D. Simon, Optimal State Estimation, pp. 395-431, Hoboken, New Jersey: Wiley, 2006.
[16] M. H. Elahinia, M. Ahmadian, Application of the extended kalman filter to control of a shape memory alloy arm, Smart Materials and Structure, Vol. 15, No. 5, pp. 1370-1384, 2006.
[17] M. Soltani, M. Bozorg, M. R. Zakerzadeh, Robust estimation of spring stiffness in a shape memory alloy actuator using extended kalman filter, Solid and Fluid Mechanics, Vol. 5, No. 4, pp. 69-81, 2016. (in Pesrsian (فارسی
[18] P. S. Lively, M. J. Atalla, N. W. Hagood, Investigation of filtering techniques applied to the dynamic shape estimation problem, Smart Materials and Structure, Vol. 10, No. 2, pp. 264-272, 2001.
[19] V. Lertpiriyasuwat, M. C. Berg, K. W. Buffinton, Extended kalman filtering applied to a two-axis robotic arm with flexible links, Robotics Research, Vol. 19, No. 3, pp. 254-270, 2000.
[20] M. S. Tsai, K. W. Wang, Control of a ring structure with multiple activepassive hybrid piezoelectrical networks, Smart Materials and Structure, Vol. 5, No. 5, pp. 695-703, 1996.
[21] H. Ahmad, T. Namerikawa, Extended kalman filter-based mobile robot localization with intermittent measurements, Systems Science & Control Engineering, Vol. 1, No. 1, pp. 113-126, 2013.
[22] M. Zare Ernani, M. Bozorg, S. Ebrahimi, Identification of an autonomous underwater vehicle dynamic using extended kalman filter with arma noise model, Robotics (Theory and Applications), Vol. 4, No. 1, pp. 22-28, 2015.
[23] L. C. Brinson, Simplifications and comparisons of shape memory alloy constitutive models, Intelligent Material Systems and Structures, Vol. 7, No. 1, pp. 108-114, 1996.
[24] M. R. Zakerzadeh, H. Salehi, Comparative analysis of some one-dimensional SMA constitutive models for a Ni-Ti wire for shape control applications with experimental data, Proceeding of 20th International Conference on Adaptive Structures and Technologies, Hong Kong, 2009, pp. 1101-1113.
[25] J. Chung, J. Heo, J. Lee, Implementation strategy for the dual transformation region in the brinson SMA constitutive model, Smart Materials and Structure, Vol. 16, No. 1, pp. N1-N5, 2007.
[26] M. Soltani, M. Bozorg, M. R. Zakerzadeh, Parameters estimation of an SMA actuator model using an extended kalman filter, Mechatronics, Under Review, 2017.
[27] M. Ansari, M. Golzar, A. H. Behravesh, Experimental studies of training stress effect on Ni-Ti sma performance in higher and lower stress than training stress, Modares Mechanical Engineer, Vol. 13, No. 10, pp. 10-24, 2014. (in Pesrsian فارسی(