مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

کنترل پیش‌بین تابعی برای ردیابی تغییرات توان هسته راکتور آب سبک تحت فشار به کمک توابع لاگر و مدل کاهش‌یافته

نویسندگان
1 گروه مهندسی برق، دانشکده فنی و مهندسی، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران
2 دانشیار، دانشکده فنی و مهندسی، دانشگاه بین المللی امام خمینی(ره)
چکیده
در این مقاله به طراحی کنترل پیش‌بین تابعی مبتنی بر توابع لاگر برای ردیابی تغییرات بار راکتور آب سبک تحت فشار (PWR) موجود در نیروگاه‌های هسته‌ای پرداخته شده است. از آنجا که علیرغم کارآیی بسیار خوب کنترل‌کننده‌های پیش‌بین در صنعت، پیاده‌سازی آنها برای سیستم‌های مرتبه بالای مقید، حجم محاسبات بالایی می‌طلبد، در این مقاله، طراحی کنترل پیش‌بین با حجم محاسبات نسبتا پایین مورد نظر قرار گرفت. لذا، ابتدا مرتبه مدل PWR با استفاده از روش برش متعادل، کاهش داده شد. سپس، با توجه به حجم محاسبات نسبتا پایین و کارآیی بالای کنترل‌کننده پیش‌بین تابعی، به طراحی کنترل‌کننده پیش‌بین تابعی مبتنی بر توابع لاگر پرداخته شده است. بدین منظور، با کمینه‌سازی انتگرال مربع خطا، پارامتر مقیاس‌بندی چندجمله‌ای لاگر تعیین شده است. سپس به علت وجود محدودیت‌های مکانیکی، قیدهایی روی فرمان کنترلی و تغییرات فرمان کنترلی در نظر گرفته شده و برای حل مساله کنترل پیش‌بین مقید و طراحی فرمان کنترلی، از روش برنامه‌ریزی مربعی استفاده شده است. همچنین به منظور نشان دادن کارایی روش پیشنهادی، پاسخ سیستم در حضور اغتشاش بررسی شده است. نشان داده شده که با استفاده از کنترل پیش‌بین تابعی بر روی مدل مرتبه کاهشی، علاوه بر کاهش حجم محاسبات، کنترل توان هسته و ردیابی تغییرات بار در حضور اغتشاش خارجی به خوبی انجام شده است.
کلیدواژه‌ها

عنوان مقاله English

Predictive Functional Control for Tracking of Core Power Variations in Pressurized Water Reactor based on Laguerre functions and Reduced-Order Model

نویسنده English

Hasan Nasiri Soloklo1 1
1 EE Dep., School of Eng., Imam Khomeini International University, Qazvin, Iran
چکیده English

In this paper, the design of predictive functional controller based on Laguerre functions to track the load changes in Pressurized Water Reactor (PWR) nuclear power stations has been considered. Since, despite of out-performance of predictive controllers in industrial applications, their implementation implies high computational complexity for constrained large scale systems, in this paper, the design of model predictive controller with low computational complexity was considered. For this purpose, at first, the order of PWR model was reduced via Balanced Truncation method. Then, due to low computational complexity and high performance of predictive functional controllers, we dealt with the design of predictive functional controllers based on Laguerre functions. In this context, the Laguerre polynomial scaling parameter was determined by minimizing integral square error. Then, due to mechanical constraints, some specific constraints were applied to the control effort and its changes, and the Quadratic Programming method was used for solving the constrained model predictive control problem and consequently, designing the control effort signal. Also, in order to show the efficiency of the proposed core power control method, the system response in the presence of disturbance is investigated. It is shown that, by using predictive functional controller on a reduced order model, in addition to the decrease of the computation volume, the performance of the core power control to track load changes in presence of external disturbance is well done.

کلیدواژه‌ها English

Predictive Functional Control
Order Reduction
Balanced Truncation
Power Station
Core Power Control
Laguerre functions
[1] P. Elkmann, Emergency Planning for Nuclear Power Plants, pp. 1-17, Baton Rouge: CRC Press, 2017.
[2] S. H. Qaiser, A. I. Bhatti, M. Iqbal, R. Samar, J. Qadir, Model validation and higher order sliding mode controller design for a research reactor, Annals of Nuclear Energy, Vol. 36, No. 1, pp. 37-45, 2008.
[3] G. R. Ansarifar, S. Saadatzi, Nonlinear control for core power of pressurized water nuclear reactors using constant axial offset strategy, Nuclear Engineering and Technology, Vol. 47, No. 7, pp. 838-848, 2015.
[4] G. Li, Modeling and LQR/LTR control for power and axial power difference of load follow PWR core, Annals of Nuclear Energy, Vol. 68, No. 1, pp. 193-203, 2014.
[5] G. R. Ansarifar, H. R. Akhavan, Sliding mode control design for a PWR nuclear reactor using sliding mode observer during operation, Annals of Nuclear Energy, Vol. 75, No. 1, pp. 611-619, 2015.
[6] G. R. Ansarifar, M. Rafiei, Second-order sliding-mode control for a pressurized water nuclear reactor considering the xenon concentration feedback, Nuclear Engineering and Technology, Vol. 47, No. 1, pp. 94-101, 2015.
[7] S. S. Khoramabadi, M. Boroushaki, Intelligent control of nuclear reactors using emotional learning, Proceedings of the 10th Information Society Conference Intelligent Systems, Slovenia, pp. 27-30, 2007.
[8] M. Boroushaki, M. B. Ghofrani, C. Lucas, M. J. Yazdanpanah, N. Sadati, Axial offset control of PWR nuclear reactor using intelligent techniques, Nuclear Engineering and Design, Vol. 227, No. 3, pp. 285-300, 2004.
[9] C. Lin, H. W. Lin, Application of fuzzy logic controller to load-follow operations in pressurized water reactors, Journal of Nuclear Science and Technology, Vol. 31, No. 5, pp. 407-419, 1994.
[10] H. L. Akin, V. Altin, Rule-based fuzzy logic controller for a PWR-type nuclear power plant, IEEE Transaction on Nuclear Science, Vol. 38, No. 2, pp. 883-890, 1991.
[11] Z. Dong, Adaptive PD power-level control for pressurized water reactors, Proceedings of the 19th World Congress, The International Federation of Automatic Control, Cape Town, South Africa, August 24-29, 2014.
[12] M. N. Khajavi, M. B. Menhaj, A.A. Suratgar, A neural network controller for load following operation of nuclear reactors, Annals Nuclear Energy, Vol. 29, No. 6, pp. 751-760, 2002.
[13] H. Eliasi, M. B. Menhaj, H. Davilu, Robust nonlinear model predictive control for nuclear power plants in load following operations with bounded xenon oscillations, Nuclear Engineering and Design. Vol. 241, No. 2, pp. 533-543, 2011.
[14] G. Wang, J. Wu, B. Zeng, Z. Xu, W. Wu, X. Ma, State-space model predictive control method for core power control in pressurized water reactor nuclear power stations, Nuclear Engineering and Technology, Vol. 49, No. 2, pp. 1-7, 2016.
[15] M. A. F. Martins, D. Odloak, A robustly stabilizing model predictive control strategy of stable and unstable processes, Automatica, Vol. 67, No. 1, pp. 132–143, 2016.
[16] M. Ghorbani, S. K. Hosseini Sani, Nonlinear model predictive control of Stewart platform 6 dof, Modares Mechanical Engineering, Vol. 16, No. 1, pp. 41-50, 2016. (in persian فارسی(
[17] M. Shahbazzadeh, S. J. Sadati Rostami, S. Minagar, Designing model predictive control for trajectory tracking of a wheeled mobile robot using laguerre functions and exponential data weighting, Modares Mechanical Engineering, Vol. 17, No. 10, pp. 20-28, 2017. (in Persian فارسی(
[18] M. Alizadeh, M. Ebrahimi Dormiyani, M. Noori Dabir, Model predictive and adaptive controller design of Tri-Tilt rotor VTOL UAV by using multi-body modeling, Modares Mechanical Engineering, Vol. 17, No. 6, pp. 179-189, 2017. (in Persian فارسی(
[19] N. bigdeli, The design of non-minimal state space fractional-order predictive functional controller for fractional systems of arbitrary order, Journal of Process Control, Vol. 29, No. 1, pp. 45-56, 2015.
[20] E. J. Davison, A method for simplifying linear dynamic systems, IEEE Transaction on Automatic Control, Vol. 11, No. 1, pp. 93–101, 1966.
[21] G. Obinata, B. D. O. Anderson, Model Reduction for Control System Design, pp. 1-60, London, Speringer Verlog, 2001.
[22] H. Nasiri Soloklo, R. Haj Mohammadi, M. M. Farsangi, Model order reduction based on moment matching using legendre wavelet and harmony search algorithm, Iranian Journal of Science and Technology, Vol. 39, No. 1, pp. 39-54, 2015.
[23] H. Nasiri Soloklo, M. M. Farsangi, Chebyshev rational functions approximation for model order reduction using harmony search, Sceintia Iranica, Vol. 20, No. 3, pp. 771-777, 2013.
[24] B. C. Moore, Principal component analysis in linear systems: controllability, observability and model reduction, IEEE Transaction on Automatic Control, Vol. 26, No.1, pp. 17–32, 1981.
[25] Z. Dong, A neural-network-based nonlinear adaptive state-observer for pressurized water reactors, Chinese Automation Congress, Chengsha, China, November 7-8, 2013.
[26] M. A. Schultz, Control of Nuclear Reactors and Power Plants, Second Edition, pp. 124-186, New York: McGraw-Hill, 1955.
[27] L. Wang, Model Predictive Control System Design and Implementation using MATLAB, pp. 85-147, London: Springer, 2009.
[28] B. Kouvaritakis, M. Cannon, Model Predictive Control: Classical, Robust and Stochastic, pp. 13-64, Switzerlamd: Springer, 2015.
[29] B. Wahlberg, System identification using laguerre models, IEEE Transaction on Automatic Control, Vol. 36, No. 5, pp. 551-562, 1991.
[30] N. L. Ricker, Model predictive control: state of the art, Proceedings of the Fourth International. Conference Chemical Process Control, Padre Island, TX, pp. 271-296, 1991.
[31] L. Wang, Discrete model predictive controller design using laguerre functions, Process Control, Vol. 14, No. 2, pp.131-142, 2004.
[32] F. Borrelli, A. Bemporad, M. Morari, Predictive Control for Linear and Hybrid Systems, pp. 29-32, United Kungdom: Cambridge University Press, 2017.
[33] S. Boyd, N. Vandenberghe, Convex Optimization, pp. 241-249, New York: Cambridge University Press, 2004.