[1] T. Ng, W. Liao, Sensitivity analysis and energy harvesting for a self-powered piezoelectric sensor, Journal of Intelligent Material Systems and Structures, Vol. 16, No. 10, pp. 785-797, 2005.
[2] J. M. Rabaey, M. J. Ammer, J. L. da Silva, D. Patel, S. Roundy, PicoRadio supports ad hoc ultra-low power wireless networking, Computer, Vol. 33, No. 7, pp. 42-48, 2000.
[3] S. Roundy, E. S. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, J. M. Rabaey, P. K. Wright, V. Sundararajan, Improving power output for vibration-based energy scavengers, IEEE Pervasive Computing, Vol. 4, No. 1, pp. 28-36, 2005.
[4] S. R. Anton, D. J. Inman, Vibration energy harvesting for unmanned aerial vehicles, The 15th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics, pp. 692824-692824-12,2008.
[5] A. Abdelkefi, M. R. Hajj, A. H. Nayfeh, Sensitivity analysis of piezoaeroelastic energy harvesters, Journal of Intelligent Material Systems and Structures Vol. 23, No. 13, pp. 1523-1531, 2012.
[6] S. B. Ayed, A. Abdelkefi, F. Najar, M. R. Hajj, Design and performance of variable-shaped piezoelectric energy harvesters, Journal of Intelligent Material Systems and Structures, Vol. 25, No. 2, pp. 174-186, 2014.
[7] Z. Yan, A. Abdelkefi, M. R. Hajj, Piezoelectric energy harvesting from hybrid vibrations, Smart Materials and Structures, Vol. 23, No. 2, pp. 025026, 2014.
[8] H. R. N. H. Sayyaadi, M. A. Askari Farsangi, An investigation on effectiveness of dimension on Magnetic Shape Memory Alloy based energy harvester with two different configurations, Modares Mechanical Engineering, Vol. 17, No. 1, pp. 136-144, 2017. (in Persian فارسی(
[9] I. Karaman, B. Basaran, H. Karaca, A. Karsilayan, Y. Chumlyakov, Energy harvesting using martensite variant reorientation mechanism in a NiMnGa magnetic shape memory alloy, Applied Physics Letters, Vol. 90, No. 17, pp. 172505, 2007.
[10] N. N. Sarawate, Characterization and Modeling of the Ferromagnetic Shape Memory Alloy Ni-Mn-Ga for Sensing and Actuation, Thesis, The Ohio State University, 2008.
[11] N. M. Bruno, Energy Harvesting Using Martensitic Variant Reorientation in Ni50Mn28. 5Ga21. 5 Magnetic Shape Memory Alloy, Thesis, Northern Arizona University, 2011.
[12] I. Nelson, C. Ciocanel, D. LaMaster, H. Feigenbaum, The Impact of Boundary Conditions on the Response of NiMnGa Samples in Actuation and Power Harvesting Applications, ASME 2013 Conference on Smart Materials , American Society of Mechanical Engineers, pp. V001T01A021- V001T01A021 , 2013.
[13] A. Saren, D. Musiienko, A. Smith, J. Tellinen, K. Ullakko, Modeling and design of a vibration energy harvester using the magnetic shape memory effect, Smart Materials and Structures, Vol. 24, No. 9, pp. 095002, 2015.
[14] H. S. M. A. Askari Farsangi, M. R. Zakerzadeh, A novel inertial energy harvester using magnetic shape memory alloy, Smart Materials and Structures, Vol. 25, No. 10, pp. 105024, 2016.
[15] H.Sayyaadi, M.Effatpanah, M.A. Askari Farsangi, Optimization of energy harvesting from vibration of beam coupled with magnetic shape memory alloys, Modares Mechanical Engineering, Vol. 16, No. 12, pp. 675-684, 2016. (in Persian فارسی(
[16] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, S. Tarantola, Global Sensitivity Analysis: The Primer, pp. 10-40, New York: Wiley, 2008.
[17] Q. Liu, T. Homma, A new computational method of a moment-independent uncertainty importance measure, Reliability Engineering & System Safety, Vol. 94, No. 7, pp. 1205-1211, 2009.
[18] A. Saltelli, Sensitivity analysis for importance assessment, Risk Analysis, Vol. 22, No. 3, pp. 579-590, 2002.
[19] R. L. Iman, S. C. Hora, A robust measure of uncertainty importance for use in fault tree system analysis, Risk Analysis, Vol. 10, No. 3, pp. 401-406, 1990.
[20] F. Pianosi, T. Wagener, A simple and efficient method for global sensitivity analysis based on cumulative distribution functions, Environmental Modelling & Software, Vol. 67, pp. 1-11, 2015.
[21] M. A. Stephens, Introduction to Kolmogorov (1933) On the Empirical Determination of a Distribution, in: S. Kotz, N. L. Johnson, Breakthroughs in Statistics: Methodology and Distribution, Eds., pp. 93-105, New York, NY: Springer New York, 1992.
[22] J. Wall, Practical statistics for astronomers-ii. correlation, data-modelling and sample comparison, Quarterly Journal of the Royal Astronomical Society, Vol. 37, pp. 519, 1996.