[1] E. Placido, M. C. Arduini-Schuster, J. Kuhn, Thermal properties predictive model for insulating foams, Infrared Physics & Technology, Vol. 46, pp. 219–231, 2005.
[2] R. Coquard, D. Baillis, D. Quenard, Experimental and theoretical study of the hot-ring method applied to low-density thermal insulators, International Journal of Thermal Sciences Vol. 47, No. 3, pp. 324–338, 2008.
[3] M. Loretz, R. Coquard, D. Baillis, E. Maire, Metallic foams: Radiative properties/comparison between different models, Quantitative Spectroscopy and Radiative Transfer, Vol. 109, No. 1, pp. 16-27, 2008.
[4] W. Huijun, F. Jintu, Measurement of radiative thermal properties of thin polymer films by FTIR, Polymer Testing, Vol. 27, pp. 122–128, 2008.
[5] R. Coquard, D. Baillis, D. Quenard, Radiative properties of expanded polystyrene foams, Journal of Heat Transfer, Vol. 131, No. 1, pp. 012702-1– 012702-10, 2009.
[6] A. Kaemmerlen, C. Vo, F. Asllanaj, G. Jeandel, D. Baillis, Radiative properties of extruded polystyrene foams: Predictive model and experimental results, Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 111, pp. 865–877, 2010.
[7] J. J. Zhao, Y. Y. Duan, X. D. Wangb, B. X. Wang, Radiative properties and heat transfer characteristics of fiber-loaded silica aerogel composites for thermal insulation, Journal of Heat and Mass Transfer, Vol. 55, pp. 5196– 5204, 2012.
[8] W. Gaosheng, L. Yusong, X. Zhang, X. Du, Radiative heat transfer study on silica aerogel and its composite insulation materials, Journal of NonCrystalline Solids, Vol. 362, pp. 231–236, 2013.
[9] R. Coquard, J. Randrianalisoa, D. Baillis, Computational prediction of radiative properties of polymer closed-cell foams with random structure, Journal of Porous Media, Vol. 16, No. 2, pp. 137–154, 2013.
[10] H. T. Yu, D. Liu, Y. Y. Duan, X. D. Wang, Theoretical model of radiative transfer in opacified aerogel based on realistic microstructures, International Journal of Heat and Mass Transfer, Vol. 70, pp. 478–485, 2014.
[11] K. Pietrak, S. Wi´sniewski, A review of models for effective thermal conductivity of composite materials, Journal of Power Technologies, Vol. 95, No. 1, pp. 14–24, 2015.
[12] Y. Zhao, G. H. Tang, M. Du, Numerical study of radiative properties of nanoporous silica aerogel, International Journal of Thermal Sciences, Vol. 89, pp. 110-120, 2015.
[13] F. Tairan, T. Jiaqi, C. Kai, F. Zhang, Determination of scattering and absorption coefficients of porous silica aerogel composites, Journal of Heat Transfer, Vol. 138, No. 3, pp. 702-709, 2016.
[14] T. Feng, P. Edstrom, M. Gulliksson, Levenberg–Marquardt methods for parameter estimation problems in the radiative transfer equation, Inverse Problems, Vol. 23, pp. 879–891, 2007.
[15] S. Y. Zhao, B. M. Zhang, S. Y. Du, X. D. He, Inverse identification of thermal properties of fibrous insulation from transient temperature measurements, Journal of Thermophysics, Vol. 30, pp. 2021–2035, 2009.
[16] N. Daouas, M. S. Radhouani, Efficient inverse estimation tool for radiative and conductive properties of insulating foams based on transient hot-wire measurements, Journal of High Temperatures-High Pressures, Vol. 40, pp. 1–29, 2010.
[17] R. Coquard, D. Rochais, D. Baillis, Experimental investigations of the coupled conductive and radiative heat transfer in metallic/ceramic foams, International Journal of Heat and Mass Transfer, Vol. 52, pp. 4907–4918, 2009.
[18] M. F. Modest, Radiative Heat Transfer, Second Edittion, pp. 9.274-9.278, New York: Diane Grossman, 2003.
[19] W. A. Fiveland, Discrete-Ordinates solutions of the radiative transport equation for rectangular enclosures, Journal of Heat Transfer, Vol. 106, pp. 699-706, 1984.
[20] M. N. Ozisik, H. R. B. Orlande, Inverse Heat Transfer Fundamentals and Applications, pp. 2.58-2.76, New York: Taylor & Francis, 2000.