[1] D. Kamopp, Computer simulation of slip-stick friction in mechanical dynamic systems, Journal of Dynamic Systems, Measurement and Control, Vol. 107, No. 1, pp. 100-103, 1985.
[2] A. Hélouvry, P. Dupont, C. C. De Wit, A survey of models, analysis tools and compensation methods for the control of machines with friction, Automatica, Vol. 30, No. 7, pp. 1083-1138, 1994.
[3] P. R. Dahl, A Solid Friction Model, Defense Technical Information Center, No. TOR-0158 (3107-18)-1, Aerospace Corp, El Segundo, Calofornia, USA, 1968.
[4] P. A. Bliman, M. Sorine, A system-theoretic approach of systems with hysteresis, Application to friction modeling and compensation, Proceedings of the 2nd European Control Conference, Groningen, Netherlands, pp. 1844- 1849, June 28- July 1, 1993.
[5] P. A. Bliman, M. Sorine, Easy to use realistic dry friction models for automatic control, Proceedings of 3rd European Control Conference, Rome, Italy, pp. 3788-3794, 1995.
[6] V. Lampaert, J. Swevers, F. Al-Bender, Modification of the Leuven integrated friction model structure, IEEE Transactions on Automatic Control, Vol. 47, No. 4, pp. 683-687, 2002.
[7] F. Al-Bender, V. Lampaert, J. Swevers, A novel generic model at asperity level for dry friction force dynamics, Tribology Letters, Vol. 16, No. 2, pp. 81-93, 2004.
[8] C.d. Wit, H. Olsson, K. Astrom, P. Lischinsky, A new model for control of systems with friction, IEEE Transactions on Automatic Control, Vol. 40, No. 3, pp. 419- 425, 1995.
[9] P. C. Kurian, Space-borne motor friction estimation using genetic algorithm (GA), 2009 International Conference on Control, Automation, Communication and Energy Conservation, Perundurai, Erode, India, pp. 475- 478, 2009.
[10] W. J. Zhang, Parameter identification of LuGre friction model for servo system based on improved particle swarm optimization algorithm, Proceedings of the 26th Chinese Control Conference, Zhangjiajie, China, pp. 135-139, 2007.
[11] D. N. Jayakumar, P. venkatesh, Glowworm swarm optimization algorithm with topics for solving multiple objective environmental economic dispatch problem, Applied Soft Computing, Vol. 23, pp. 375-386, 2014.
[12] K. N. Krishnanand, D. Ghose, Detection of multiple source locations using a glowworm metaphor with applications to collective robotics, IEEE Swarm Intelligence Symposium, Pasadena, California, USA, pp. 84-91, 2005.
[13] S. Lukasik, P. A. Kowalski, Fully informed swarm optimization algorithms: basic concepts, variants and experimental evaluation, Proceedings of the 2014 Federated Conference on Computer Science and Information Systems, Warsaw, Poland, pp. 155-161, 2014.
[14] A. S. Eesa, A. M. A. Brifcani, Z. Orman, Cuttlefish Algorithm-A Novel BioInspired Optimization Algorithm, International Journal of Scientific & Engineering Research, Vol. 4, No. 9, pp. 1978-1986, 2013.
[15] S. A. Moosavian, E. Papadopulos, Modified transpose Jacobian control of robotic systems, Automatica, Vol. 43, No. 7, pp. 1226-1233, 2007.
[16] S. R. Naghibi, A. A. Pirmohamadi, S. A. A Moosavian, Fuzzy MTEJ controller with integrator for control of underactuated manipulators, Robotic and Computer Integrated Manufacturing, Vol. 48, pp. 93-101, 2017.
[17] J. Park, I. W. Sandberg, Universal approximation using radial-base function network, Neural computation, Vol. 3, No. 2, pp. 246-257, 1991.
[18] Z. Yu, Yang, Full glowworm swarm optimization algorithm for whole-set orders scheduling in single machine, Scientific World Journal, Vol. 2013, pp. 1-6, 2013.
[19] X. Li, Y. Zhu, k. Yang, Self-adaptive composite control for flexible joint robot based on RBF neural network, IEEE International Conference on Intelligent Computing and Intelligent Systems, Xiamen, China, pp. 837-840, 2010.
[20] F. L. Lewis, D. M. Dawson, C. T. Abdallah, Robot Manipulator Control Theory and Practice, Second Edition, pp. 148-158, New York: Marcel Dekker, 2004.
[21] F. Girosi, T. Poggio, Networks and the best approximation property, Biological Cybernetics, Vol. 63, No. 3, pp. 169-176, 1990.
[22] T. Poggio, F. Girosi, Networks for approximation and learning, Proceedings of the IEEE, Vol. 78, No. 9, pp. 1481–1497, 1990.
[23] Y. Liu, S. Tong, Adaptive NN tracking control of uncertain nonlinear discrete-time systems with nonaffine deadzone input, IEEE Transactions On Cybernetics, Vol. 45, No. 3, pp. 497-505, 2015.