مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی رفتار خمشی تیر کامپوزیتی از جنس پلیمر حافظه دار با بدنه موج دار

نویسندگان
1 دانشکده مهندسی مکانیک، دانشگاه تهران، تهران، ایران
2 دانشکده مهندسی مکانیک دانشگاه تهران
3 عضو هیات علمی دانشگاه تهران
4 استاد، دانشکده مهندسی مکانیک ، دانشگاه صنعتی شریف، تهران
چکیده
در این مقاله، رفتار خمشی یک تیر کامپوزیتی متشکل از یک بخش موج‌دارکه حفره‌های آن با ماده پلیمری حافظه‌دار پر شده است، مورد بررسی قرار گرفته است. تیر موردنظر یک تیر ساندویچی ازجنس پلیمر حافظه‌دار است که بدنه‌ای موج‌دار از جنس پلیمری دارد. این تیر در سنسورها و فعال‌کننده‌ها کاربرد فراوانی دارد. از آنجایی که در پروفیل‌های موج‌دار نسبت استحکام به وزن در راستای عمود به موج بیشتر است، لذا تیرهایی که بخش موج‌دار در راستای عرضی تیر قرار دارد، نسبت به تیرهایی که بخش موج‌دار در راستای طولی است، مستحکم‌تر هستند. با استفاده از مدل ساختاری ارائه شده توسط چن ولاگوداس برای مواد پلیمری حافظه‌دار و همچنین باکمک تئوری تیر اویلر- برنولی، رفتار تیر کامپوزیتی بررسی شده است. به دلیل اینکه مدل ساختاری استفاده شده به فرم انتگرالی است، از روش تفاضلات محدود برای جداسازی معادلات استفاده شده است. با استفاده از یک نرم‌افزار المان محدود نیز نتایج تحلیل خمشی تیر بدست آمده است وبا نتایج روش تفاضلات محدود مقایسه گردیده است. نتایج نشانگر دقت بالای روش تفاضلات محدود در حل این مسئله است. نتایج تحلیل خمشی تیر با هسته موج‌دار دارای شکل‌های مثلثی، سینوسی و ذوزنقه‌ای بدست آورده و بایکدیگر مقایسه شده‌اند. نتایج نمایانگر آن است که توانایی حمل بار در تیر کامپوزیتی در مقایسه با تیر پلیمری خالص افزایش یافته است. توانایی تحمل بار بیشتر، با اندکی کاهش در تثبیت شکل تیر بدست می‌آید. در نهایت، شرایط مربوط به چرخه بازیابی تنش مقید نیز برروی تیر کامپوزیتی اعمال و نتایج مربوط به این چرخه نیز بدست آمده‌اند.
کلیدواژه‌ها

عنوان مقاله English

Investigation on bending behavior of shape memory polymeric composite beam with a corrugated skin

نویسندگان English

Samira Akbari-Azar 1
Mostafa Baghani 2
Hamid Shahsavari 2
Mohammad Reza Zakerzadeh 3
Saeed Sohrabpour 4
1 Department of Mechanical Engineering, University of Tehran, Tehran, Iran
2 School of mechanical engineering, University of Tehran
3 Department of Mechanical Engineering, University of Tehran, Tehran, Iran
4 Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
چکیده English

In this paper, a sandwich beam of a SMP material which have a corrugated core is studied. The corrugated core is from a polymeric material. Structures with corrugated profiles show higher stiffness-to-mass ratio in the transverse to corrugation direction compared to flat structures. As a result, the beam with corrugation along the transverse direction is stiffer than the one with corrugation along the beam length. The flexural behavior of the composite corrugated beam is studied employing a developed constitutive model for SMP and the Euler-Bernoulli beam theory. The constitutive model utilized is in integral form and is discretized employing finite difference scheme. To verify the results of the Euler-Bernoulli beam theory and finite difference method, finite element models of different corrugated sections have been simulated in a 3D finite element program. The results demonstrate that the developed model for the composite beam presented in this study predicts the behavior of the beam successfully. The sandwich beam with different corrugated cores (triangular, sinusoidal and trapezoidal shapes) are compared with each other. Also, results show that the shape fixity is decreased a little, like any other reinforcing method. This decrease in shape fixity results in increase of load capacity in composite beams. The stress-free strain recovery and constrained stress-recovery cycles are both studied.

کلیدواژه‌ها English

Shape Memory Polymers (SMPs)
sandwich beam
Euler-Bernoulli beam theory
corrugated structures
finite difference method
[1] S. Imai, K. Sakurai, An actuator of two-way behavior by using two kinds of shape memory polymers with different Tgs, Precision Engineering, Vol. 37, No. 3, pp. 572-579, 2013.
[2] A. Basit, G. L’Hostis, B. Durand, High actuation properties of shape memory polymer composite actuator, Smart Materials and Structures, Vol. 22, No. 2, pp. 025023, 2013.
[3] T. Hiroaki, J. Chenyang, U. Koichiro, E. Mitsuhiro, A. Takao, I. Takanori, Novel Microfluidic Valve Technology Based on Shape Memory Effect of Poly(ε-caprolactone), Applied Physics Express, Vol. 6, No. 3, pp. 037201, 2013.
[4] D. Bergman, B. Yang, An Analytical Shape Memory Polymer Composite Beam Model for Space Applications, International Journal of Structural Stability and Dynamics, Vol. 16, No. 02, pp. 1450093, 2016.
[5] D. Bergman, B. Yang, A finite element model of shape memory polymer composite beams for space applications, International journal for numerical methods in engineering, Vol. 103, No. 9, pp. 671-702, 2015.
[6] S. Reese, M. Böl, D. Christ, Finite element-based multi-phase modelling of shape memory polymer stents, Computer methods in applied mechanics and engineering, Vol. 199, No. 21–22, pp. 1276-1286, 2010.
[7] S. Chen, Y. Chen, Z. Zhang, Y. Liu, J. Leng, Experiment and analysis of morphing skin embedded with shape memory polymer composite tube, Journal of intelligent material systems and structures, Vol. 25, No. 16, pp. 2052-2059, 2014.
[8] J. E. Manzo, E. Garcia, The smart joint: model and optimization of a shape memory alloy/shape memory polymer composite actuator, in ASME Conference on Smart Materials Adaptive Structures and Intelligent Systems, 2008, pp. 577-583.
[9] J. Sun, Y. Liu, J. Leng, Mechanical properties of shape memory polymer composites enhanced by elastic fibers and their application in variable stiffness morphing skins, Journal of Intelligent Material Systems and Structures, Vol. 26, No. 15, pp. 2020-2027, 2015.
[10] Z. Wang, W. Song, L. Ke, Y. Wang, Shape memory polymer composite structures with two-way shape memory effects, Materials Letters, Vol. 89, pp. 216-218, 2012.
[11] Q. Yang, G. Li, Temperature and rate dependent thermomechanical modeling of shape memory polymers with physics based phase evolution law, International Journal of Plasticity, Vol. 80, pp. 168-186, 2016.
[12] H. Park, P. Harrison, Z. Guo, M.-G. Lee, W.-R. Yu, Three-dimensional constitutive model for shape memory polymers using multiplicative decomposition of the deformation gradient and shape memory strains, Mechanics of Materials, Vol. 93, pp. 43-62, 2016.
[13] E. Boatti, G. Scalet, F. Auricchio, A three-dimensional finite-strain phenomenological model for shape-memory polymers: Formulation, numerical simulations, and comparison with experimental data, International Journal of Plasticity, Vol. 83, pp. 153-177, 2016.
[14] Y. Liu, K. Gall, M. L. Dunn, A. R. Greenberg, J. Diani, Thermomechanics of shape memory polymers: Uniaxial experiments and constitutive modeling, International Journal of Plasticity, Vol. 22, No. 2, pp. 279-313, 2006.
[15] Y.-C. Chen, D. C. Lagoudas, A constitutive theory for shape memory polymers. Part I: large deformations, Journal of the Mechanics and Physics of Solids, Vol. 56, No. 5, pp. 1752-1765, 2008.
[16] Y.-C. Chen, D. C. Lagoudas, A constitutive theory for shape memory polymers. Part II: a linearized model for small deformations, Journal of the Mechanics and Physics of Solids, Vol. 56, No. 5, pp. 1766-1778, 2008.
[17] M. Baghani, R. Naghdabadi, J. Arghavani, S. Sohrabpour, A thermodynamically-consistent 3 D constitutive model for shape memory polymers, International Journal of Plasticity, Vol. 35, pp. 13-30, 2012.
[18] M. Baghani, J. Arghavani, R. Naghdabadi, A finite deformation constitutive model for shape memory polymers based on Hencky strain, Mechanics of Materials, Vol. 73, pp. 1-10, 2014.
[19] O. A. Balogun, Thermo-mechanical constitutive model of shape memory polymer–numerical modeling, experimental validation and its application to aero-morphing structures, Phd Thesis, School of Mechanical and Materials Engineering, Washington State University, 2015.
[20] Y. Li, Y. He, Z. Liu, A viscoelastic constitutive model for shape memory polymers based on multiplicative decompositions of the deformation gradient, International Journal of Plasticity, Vol. 91, pp. 300-317, 2017.
[21] X. Guo, L. Liu, B. Zhou, Y. Liu, J. Leng, Constitutive model for shape memory polymer based on the viscoelasticity and phase transition theories, journal of intelligent material systems and structures, Vol. 27, No. 3, pp. 314-323, 2016.
[22] J. Guo, J. Liu, Z. Wang, X. He, L. Hu, L. Tong, X. Tang, A thermodynamics viscoelastic constitutive model for shape memory polymers, Journal of Alloys and Compounds, Vol. 705, pp. 146-155, 2017.
[23] H. Mohammadi, S. Ziaei-Rad, I. Dayyani, An equivalent model for trapezoidal corrugated cores based on homogenization method, Composite Structures, Vol. 131, pp. 160-170, 2015.
[24] E. Syerko, A. A. Diskovsky, I. V. Andrianov, S. Comas-Cardona, C. Binetruy, Corrugated beams mechanical behavior modeling by the homogenization method, International Journal of Solids and Structures, Vol. 50, No. 6, pp. 928-936, 2013.
[25] G. Robin, M. Jrad, N. Mathieu, A. Daouadji, E. M. Daya, Vibration analysis of corrugated beams: The effects of temperature and corrugation shape, Mechanics Research Communications, Vol. 71, pp. 1-6, 2016.
[26] I. Dayyani, S. Ziaei-Rad, M. I. Friswell, The mechanical behavior of composite corrugated core coated with elastomer for morphing skins, Journal of Composite Materials, Vol. 48, No. 13, pp. 1623-1636, 2014.
[27] I. Dayyani, S. Ziaei-Rad, H. Salehi, Numerical and Experimental Investigations on Mechanical Behavior of Composite Corrugated Core, Applied Composite Materials, Vol. 19, No. 3, pp. 705-721, 2012.
[28] A. Jamalimehr, M. Baghani, M. Baniassadi, M. R. Zakerzadeh, An investigation on thermomechanical behavior of shape memory polymer beams reinforced by corrugated polymeric sections, Meccanica, Vol. 52, pp. 1947-1962, 2016.
[29] M. Baghani, A. Taheri, An analytic investigation on behavior of smart devices consisting of reinforced shape memory polymer beams, Journal of Intelligent Material Systems and Structures, Vol. 26, No. 11, pp. 1385-1394, 2015.
[30] J. Mark, Polymer data handbook pp. 863-865, New York: Oxford University Press, 2009.