مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

مطالعه تجربی نیروها و انرژی مخصوص در سنگ‌زنی کامپوزیت سیلیکون کارباید تقویت‌شده با فیبر کربن با روش های مختلف روانکاری

نویسندگان
1 دانشکده مهندسی مکانیک، دانشگاه صنعتی امیرکبیر، تهران
2 دانشکده مهندسی مکانیک، دانشگاه صنعتی امیر کبیر، تهران
چکیده
کامپوزیت‌های پایه سرامیکی دسته جدیدی از مواد با تکنولوژی پیشرفته هستند که می‌توانند جایگزین مناسبی برای سوپر آلیاژهای فلزی باشند. این کامپوزیت‌ها به دلیل خصوصیات برجسته شامل وزن خیلی پایین، سختی و چقرمگی نسبتا بالا و مقاومت به خوردگی و سایش زیاد کاربردهای گسترده‌ای در صنایع مدرن پیدا کرده‌اند. به دلیل سختی بالا و ساختار ناهمگون، فرآیند سنگ‌زنی این کامپوزیت‌ها ناپایدار و همراه با نیروها و دماهای بالا در حین فرآیند ماشینکاری است. هدف این پژوهش غلبه بر مشکل سنگ‌زنی این کامپوزیت‌ها با تحلیل و شناخت تاثیر پارامترهای عمده سنگ‌زنی شامل سرعت برش، سرعت پیشروی و عمق بار بر نیروها، انرژی مخصوص و نسبت نیروی سنگ‌زنی در سه محیط مختلف شامل سنگ‌زنی خشک، سنگ‌زنی با سیال برشی و روش روانکاری کمینه می‌باشد. برای ارزیابی معنی‌دار بودن تاثیر پارامترهای ورودی بر پاسخ‌ها و همچنین به دست‌آوردن معادلات پیش‌بینی از آنالیز واریانس استفاده گردید. نتایج نشان داد که روش روانکاری کمینه موثرترین روش روانکاری و خنک‌کاری می‌باشد بطوریکه موجب کاهش نیروهای مماسی سنگ‌زنی به میزان 38.88% و نیروهای عمودی به مقدار 31.16% نسبت به سنگ زنی خشک می گردد، در حالیکه مقادیر کاهش نیروها در سنگ زنی با سیال برشی برابر 34.22% برای نیروهای مماسی و 24.81% برای نیروهای عمودی نسبت به سنگ زنی خشک است. همچنین ملاحظه گردید که افزایش سرعت برش باعث کاهش نیروها و نسبت نیروی سنگ‌زنی و افزایش انرژی مخصوص می‌گردد در حالیکه افزایش سرعت پیشروی و عمق بار باعث افزایش نیروها و نسبت نیروی سنگ‌زنی و کاهش انرژی مخصوص می‌شود.
کلیدواژه‌ها

عنوان مقاله English

Experimental study on grinding forces and specific energy in three different environments of grinding carbon fiber reinforced silicon carbide composite

نویسندگان English

hamed esmaeili 1
hamed adibi 1
seyed mehdi rezaei 2
1 department of mechanical engineering, Amirkabir university of technology, Tehran, Iran
2 department of mechanical engineering, Amirkabir university of technology
چکیده English

Ceramic matrix composites (CMCs) are a new class of high technology materials which can be utilized as a replacement for metallic super-alloys. CMCs have a vast array of applications in modern industries due to their upstanding properties, including low density, relatively high hardness and fracture toughness, and high corrosion and wear resistance. Extremely high hardness and inhomogeneous structure of CMCs cause unstable process and high grinding forces and temperature. This research was conducted in order to overcome the grinding challenges of these composites by recognizing and analyzing the effects of main process parameters comprising cutting speed, feed speed, and depth of cut on the grinding forces, specific energy, and grinding force ratio in three different environments including dry, wet and MQL grinding. To evaluate the significance of input parameters and their influence on the responses and also to derive predicting equations, Analysis of Variance (ANOVA) was employed. It was concluded that MQL technique is the most efficient cooling-lubrication method where implementation of this process reduces the tangential grinding force by 38.88% and normal grinding force by 31.16%, relative to dry grinding; however, the amount of force reduction in wet grinding is 34.22% for tangential grinding force and 24.81% for normal grinding force, relative to dry grinding. In addition, increase of cutting speed leads to reduced grinding forces and force ratio and higher amounts of specific energy, and also increase of feed speed and depth of cut cause higher grinding forces and force ratio and lower amounts of specific energy.

کلیدواژه‌ها English

Ceramic matrix composite
grinding forces
minimum quantity lubrication
fluid grinding
dry grinding
[1] N. P. Bansal, J. Lamon, Ceramic Matrix Composites: Materials, Modeling and Technology, First Edittion, pp. 147-207, New York: John Wiley & Sons, 2015.
[2] S. Yuan, H. Fan, M. Amin, A cutting force prediction dynamic model for side milling of ceramic matrix composites C/SiC based on rotary ultrasonic machining, The International Journal of Advanced Manufacturing Technology, Vol. 86, No. 6, pp. 37-48, 2016.
[3] Y. Wang, V. K. Sarin, B. Lin, H. Li, S. Gillard, Feasibility study of the ultrasonic vibration filing of carbon fiber reinforced silicon carbide composites, International Journal of Machine Tools and Manufacture, Vol. 101, No. 4, pp. 10-17, 2016.
[4] W. Krenkel, N. Langhof, Ceramic Matrix Composites for High Performance Friction Applications, Proceedings of the IV Advanced Ceramics and Applications Conference, Paris: Springer, pp. 13-28, 2017.
[5] D. J. Nestler, N. Roder, A. Todt, An innovative production method for a C/C-SiC brake disc, suitable for a large-scale production, 6th International Munich Chassis Symposium, Munich: Springer, pp. 605-627, 2015.
[6] N. Boubekri, V. Shaikh, Minimum quantity lubrication (MQL) in machining: Benefits and drawbacks, Journal of Industrial and Intelligent Information, Vol. 3, No. 3, pp. 205-209, 2015.
[7] B. Boswell, M. Islam, I. J. Davies, Y. Ginting, A. K. Ong, A review identifying the effectiveness of minimum quantity lubrication (MQL) during conventional machining, The International Journal of Advanced Manufacturing Technology, Vol. 91, No. 1-4, pp. 1-20, 2017.
[8] Q. Liu, G. Huang, X. Xu, C. Fang, C. Cui, A study on the surface grinding of 2D C/SiC composites, The International Journal of Advanced Manufacturing Technology, Vol. 93, No. 5-8, pp. 1595-1603, 2017.
[9] T. Tawakoli, M. J. Hadad, M. H. Sadeghi, A. Daneshi, S. Stöckertc, A. Rasifard, An experimental investigation of the effects of workpiece and grinding parameters on minimum quantity lubrication—MQL grinding, International Journal of Machine Tools and Manufacture, Vol. 49, No. 12, pp. 924-932, 2009.
[10] R. F. Damasceno, R. de Ruzzi, T. V. França, H. J. de Mello, R. B. da Silva, P. R. de Aguiar, E. C. Bianchi, Performance evaluation of various coolinglubrication techniques in grinding of hardened AISI 4340 steel with vitrified bonded CBN wheel, The International Journal of Advanced Manufacturing Technology, Vol. 92, No. 9-12, pp. 1-12, 2017.
[11] M. M. A. Khan, M. A. H. Mithu, N. R. Dhar, Effects of minimum quantity lubrication on turning AISI 9310 alloy steel using vegetable oil-based cutting fluid, Journal of Materials Processing Technology, Vol. 209, No. 15, pp. 5573-5583, 2009.
[12] N. R. Dhara, S. Islama, M. Kamruzzaman, Effect of minimum quantity lubrication (MQL) on tool wear, surface roughness and dimensional deviation in turning AISI-4340 Steel, Gazi University Joural of Science, Vol. 20, No. 2, pp. 23-32, 2007.
[13] I. D. Marinescu, M. P. Hitchiner, E. Uhlmann, W. B. Rowe, I. Inasaki, Handbook of Machining with Grinding Wheels, pp. 9-21, New York: CRC Press, 2006.
[14] B. Azarhoushang, T. Tawakoli, Development of a novel ultrasonic unit for grinding of ceramic matrix composites, The International Journal of Advanced Manufacturing Technology, Vol. 57, No. 9, pp. 945-955, 2011.
[15] K. Weinert, T. Jansen, Machining Aspects for the Drilling of C/C–SiC Materials, W. Krenkel (Eds.), Ceramic Matrix Composites, pp. 287–301, Weinheim: Wiley-VCH, 2008.
[16] E. Uhlmann, T. B. Klein, L. Schweitzer, A. Neubrand, NC-Form grinding of carbon fibre reinforced silicon carbide composite, Asia-Pacific Conference on Engineering Plasticity and its Applications (AEPA), Singapore: Key Engineering Materials, pp. 314-317, 2013.
[17] T. Tawakoli, B. Azarhoushang, Intermittent grinding of ceramic matrix composites (CMCs) utilizing a developed segmented wheel, International Journal of Machine Tools and Manufacture, Vol. 51, No. 2, pp. 112-119, 2011.
[18] L. Zhang, C. Ren, C. Ji, Z. Wang, G. Chen, Effect of fiber orientation on surface grinding process of unidirectional C/SiC composites, Applied Surface Science, Vol. 366, No. 1, pp. 424-431, 2016.
[19] Z. C. Li, Y. Jiao, T. W. Deines, Z. J. Pei, C. Treadwell, Rotary ultrasonic machining of ceramic matrix composites: Feasibility study and designed experiments, International Journal of Machine Tools and Manufacture, Vol. 45, No. 12, pp. 1402-1411, 2005.
[20] M. Emami, Theoretical and Experimental Investigation of the Effects of Ultrasonic Vibrations and Minimum Quantity Lubrication on Grinding Process of Engineering Ceramics, PhD Thesis, Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, 2013. (In Persian (فارسی
[21] T. Tashiro, J. Fujiwara, Y. Takenaka, Grinding of C/C-SiC composite in dry method, Towards Synthesis of Micro-/Nano-systems, London: Springer, pp. 351-352, 2007.
[22] W. Krenkel, Handbook of Ceramic Composites, pp. 117-148, Boston: Springer, 2005.
[23] B. Li, C. Li, Y. Zhang, Y. Wang, D. Jia, M. Yang, Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil, Chinese Journal of Aeronautics, Vol. 29, No. 4, pp. 1084-1095, 2016.
[24] W. F. Ding, J. H. Xu, Z. Z. Chen, H. H. Su, Y. C. Fu, Grindability and surface integrity of cast nickel-based superalloy in creep feed grinding with brazed CBN abrasive wheels, Chinese Journal of Aeronautics, Vol. 23, No. 4, pp. 501-510, 2010.
[25] T. Tawakoli, M. J. Hadad, M. H. Sadeghi, Influence of oil mist parameters on minimum quantity lubrication - MQL grinding process, International Journal of Machine Tools & Manufacture, Vol. 50, No. 6, pp. 521-531, 2010.
[26] M. Emami, M. H. Sadeghi, A. A. D. Sarhan, F. Hasani, Investigating the Minimum Quantity Lubrication in grinding of Al2O3 engineering ceramic, Journal of Cleaner Production, Vol. 68, No. 1, pp. 632-643, 2014.
[27] A. Esmaeilzare, H. Gholipour, H. Adibi, S.M. Rezaei, Surface and subsurface damage measurements in zerodur glass-ceramic grinding process and their correlation with surfaceroughness, Modares Mechanical Engineering, Vol. 15, No. 13, pp. 339-344, 2015. (in Persian فارسی(
[28] S. Malkin, C. Guo, Grinding Technology: Theory and Application of Machining with Abrasives, Second Edition, pp. 43-74, New York: Industrial Press Inc., 2008.
[29] T. Tawakoli, M. J. Hadad, M. H. Sadeghi, Investigation on minimum quantity lubricant-MQL grinding of 100Cr6 hardened steel using different abrasive and coolant–lubricant types, International Journal of Machine Tools and Manufacture, Vol. 50, No. 8, pp. 698-708, 2010.
[30] G. Boothroyd, W. A. Knight, Fundamentals of Machining and Machine Tools, Third Edition, pp. 82-84, New York: Taylor & Francis group, 2006