مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

ترکیب روش اویلری-لاگرانژی و اویلری-اویلری برای مدلسازی عددی جریان چگال حاوی ذره

نویسندگان
1 دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)، تهران،ایران
2 دانشگاه زنجان، زنجان،ایران
3 دانشگاه زنجان،زنجان،ایران
4 دانشگاه زنجان، زنجان، ایران
چکیده
جریان‌های چگال، به دلیل تفاوت چگالی بین جریان و محیط اطراف، جریان می‌یابند. دسته مهمی از سیال‌های چگال، جریان‌های گل‌آلود نامیده می‌شوند که اختلاف چگالی، به‌خاطر حضور ذرات جامد معلق در سیال ایجاد می‌شود. در کار حاضر، تلاش گردید تا با کنار هم گذاردن دو روش اویلری و لاگرانژی، از مزیت هر یک استفاده نمود، به این صورت که ذرات بزرگ‌تر که به ‌علت سرعت سقوط بیشتر، نقش موثرتری را در مکانیزم رسوب دارند، به صورت لاگرانژی و ذرات کوچک‌تر با روش اویلری محاسبه می‌شوند. برای بدست‌آمدن معیاری برای این دسته‌بندی ذرات، داخل یک کانال ساده، هفت جریان با ابعاد ذرات متفاوت به صورت اویلری-اویلری، شبیه‌سازی عددی گردید و با حالت بدون ذره مقایسه شد و هم‌چنین روش اویلری-اویلری با نتایج آزمایشگاهی صحت‌سنجی شده است و مشخص گردید زمانی که ابعاد ذرات کوچک‌تر از 12 میکرون باشد، فرآیند رسوب‌گذاری، محسوس نمی‌باشد و می‌توان از اثر حضور این نوع از ذرات چشم پوشی نمود؛ بنابراین روش اویلری-اویلری برای ذرات کمتر از 12 میکرون روش مناسبی محسوب می‌شود. اعتبار‌سنجی روش اویلری-لاگرانژی با نتایج آزمایشگاهی صورت گرفته است و در نهایت جریان داخل کانال با طیفی از ابعاد ذرات با روش پیشنهاد شده در این پژوهش (ترکیب دو دیدگاه) شبیه‌سازی شده و به تشریح نتایج بدست‌آمده پرداخته شده است. برای انجام شبیه‌سازی‌‌های عددی از توسعه کدهای متن‌باز اپن‌فوم برای لحاظ کردن اثر ذرات استفاده شده است. باتوجه به آشفته بودن جریان از روش شبیه‌سازی گردابه‌های بزرگ برای مدل‌سازی آشفتگی استفاده شده است.
کلیدواژه‌ها

عنوان مقاله English

The Eulerian-Lagrangian and Eulerian-Eulerian methods combination for numerical modeling of the particle laden density current

نویسندگان English

Hamid Yousefi 1
Ehsan Khavasi 2
Saba teymouri 2
Parsa Nazmi 3
Zahra Mashhadi 4
1 Amirkabir University of Technology(Tehran Polytechnic),Tehran,Iran
2 Faculty member
3 University of Zanjan,Zanjan,Iran
4 University of Zanjan,Zanjan,Iran
چکیده English

Density currents flow due to the density difference between the current and surrounding environment. An important category of density currents is called turbidity currents, which density difference created as a result of suspended solid particle presence in fluid. In the present study, it is tried to use both Eulerian-Eulerian and Eulerian-Lagrangian methods, to take advantage of each one. In this way, the larger particle that have a more effective role in sedimentation mechanism due to the more falling velocity are calculated as Lagrangian and smaller particles by the Eulerian method. In order to obtain a criterion for particle assortment, seven currents with different particle sizes in the Eulerian-Eulerian model have been numerically simulated in a simple channel and it is compared with no particle case, and also the Eulerian-Eulerian method has been verified with experimental results and identified when the particle sizes is less than 12 micron, the sedimentation process is not appreciable, and the presence effect of these kind of particle can be ignored. Therefore, the Eulerian-Eulerian method is a suitable method for this case. The Eulerian-Lagrangian method validation has been performed with experimental results. Finally, the current inside the channel with a spectrum of particle dimensions is simulated and described the results by the proposed method (the combination of two methods). To perform numerical simulations, the development of open-source OpenFOAM codes has been used to take into account the effect of particle. Due to the current’s turbulence, a Large Eddy Simulation method has been used for turbulent modeling.

کلیدواژه‌ها English

Continuous gravity current
Eulerian-Eulerian method
Eulerian-Lagrangian method
Large Eddy Simulation
particles
[1] Z. He, P. Hu, H. Ho, Y. Lin, Hydrodynamics of gravity currents down a ramp in linearly stratified environments, Journal of Hydraulic Engineering, Vol. 20, No. 3, pp. 3-6, 2016.
[2] S. Chamoun, G. De Cesare, A. J. Schleiss, Venting of turbidity currents approaching a rectangular opening on a horizontal bed, Journal of Hydraulic Research, Vol. 0 , No. 0, pp. 1-15, 2017.
[3] C. Hartel, E. Meiburg, F. Necker, Vorticity dynamics during the start-up phase of gravity currents, Nuovo Cimento-Societa Italiana Di Fisica Sezione Civile, Vol. 22, No. 6, pp. 823-834, 1999.
[4] C. Hartel, E. Meiburg, F. Necker, Analysis and direct numerical simulation of the flow at a gravity-current head Part 1: Flow topology and front speed for slip and no-slip boundaries, Journal of Fluid Mechanics, Vol. 418, No. 7, pp. 189-212, 2000.
[5] C. Hartel, F. Carlsson, M. Thunblom, Analysis and direct numerical simulation of the flow at a gravity-current head Part 2: The lobe-and-cleft instability, Journal of Fluid Mechanics, Vol. 418, No. 1, pp. 213-229, 2000.
[6] Q. Wang, K. D. Squires, Large eddy simulation of particle-laden turbulent channel flow, Physics of Fluids, Vol. 8, No. 5, pp. 1207, 1996.
[7] M. D. Patterson, J. Simpson, S. Dalziel, N. Nikiforakis, Numerical modelling of two‐dimensional and axisymmetric gravity currents, International Journal for Numerical Methods in Fluids, Vol. 47, No. 10‐11, pp. 1221-1227, 2005.
[8] S. K. Ooi, G. Constantinescu, L. Weber, Numerical simulations of lock exchange compositional gravity current, Journal of Fluid Mechanics, Vol. 635, pp. 361-388, 2009.
[9] S.K. Ooi, G. Constantinescu, L. J. Weber, 2D Large-Eddy Simulation of lockexchange gravity current flows at high Grashof numbers, Journal of Hydraulic Engineering, Vol. 133, No. 3, pp. 1037-1047, 2007.
[10] S. K. Ooi, G. Constantinescu, L. Weber, A numerical study of intrusive compositional gravity currents, Physics of Fluids, Vol. 19, No. 7, pp. 076602-076602-14, 2007.
[11] M. Mahdinia, B. Firoozabadi, M. Farshchi, A.G. Varnamkhasti, H. Afshin, Large eddy simulation of Lock-Exchange flow in a curved channel, Journal of Hydraulic Engineering, Vol. 138, No. 1, pp. 57-70, 2011.
[12] M. Nasr-Azadani, E. Meiburg, Turbidity currents interacting with threedimensional seafloor topography, Journal of Fluid Mechanics, Vol. 745, pp. 409-443, 2014.
[13] L. Ottolenghi, C. Adduce, R. Inghilesi, V. Armenio, F. Romon, Entrainment and mixing in unsteady gravity currents, Journal of. Hydraulic Research, Vol. 54, No. 5, pp. 541-557, 2016.
[14] J. R. Fessler, J. K. Eaton, Turbulence modification by particles in a backward-facing step flow, Journal of Fluid Mechanics, Vol. 394, pp. 97- 117, 1999.
[15]G. Hetsroni, Particles-turbulence interaction, International Journal of Multiphase Flow, Vol. 15, No. 5, pp. 735-746, 1989.
[16] R. A. Gore, C. T. Crowe, Modulation of turbulence by dispersed phase, Journal of Fluids Engineering, Vol. 113, No. 2, pp. 304-307, 1991.
[17] Y. Yang, J. N. Chung, T. R. Troutt, C. T. Crowe, The influence of particles on the spatial stability of two-phase mixing layers, Physics of Fluids A 2, Vol. 2, No. 10, pp. 1839-1845, 1990.
[18] A. A. Mostafa, H. C. Mongia, V. G. McDonell, G. S. Samuelsen, Evolution of particle-laden jet flows: A theoretical and experimental study, Vol. 27, No. 2, AIAA, pp. 167-183, 1989.
[19] S. K. Ooi, G. Constantinescu, L. Weber, Numerical simulations of lockexchange compositional gravity current, Journal of Fluid Mechanics, Vol. 635, pp. 361-388, 2009.
[20] J. Paik, A. Eghbalzadeh, F. Sotiropoulos, Three-Dimensional unsteady RANS modeling of discontinuous gravity currents in rectangular domains, Journal of Hydraulic Engineering, Vol. 135, No. 6, pp. 505-521, 2009.
[21] P. Moin, J. Kim, Numerical investigation of turbulent channel flow, Journal of Fluid Mechanics, Vol. 118, pp. 341-377, 1982.
[22] A. Peer, A. Gopaul, M. Dauhoo, M. Bhuruth, A new fourth-order nonoscillatory central scheme for hyperbolic conservation laws, Applied Numerical Mathematics, Vol. 58, No. 5, pp. 674-688, 2008.
[23] F. Necker, C. Härtel, L. Kleiser, E. Meiburg, High-resolution simulations of particle-driven gravity currents, International Journal of Multiphase Flow, Vol. 28, No. 2, pp. 279-300, 2002.
[24] T. H. Ellison, J. S. Turner, Turbulent entrainment in stratified flows, Journal of Fluid Mechanics, Vol. 6, No. 3 pp. 423–448, 1959.
[25] M. Garcia, G. Parker, Experiments on the entrainment of sediment into suspension by a dense bottom current, Journal of Geophysical Research, Vol. 98, No. 3, pp. 4793–4807, 1993.
[26] P. A. Cundall, O. D. Strack, A discrete numerical model for granular assemblies, Geotechnique Journal, Vol. 29, No. 1, pp. 47-65, 1979.
[27] M. Saidi, H. Basirat Tabrizi, J. R. Grace, C. J. Lim, Hydrodynamic investigation of gas-solid flow in rectangular spout-fluid bed using CFDDEM modeling, Powder Technology, Vol. 284, No. 2, pp. 355-364, 2015.
[28] J. D. Kulick, J. R. Fessler, J. K. Eaton, Particle response and turbulence modification in fully developed channel flow, Journal of Fluid Mechanics, Vol. 277, pp. 109-134, 1994.
[29] J. K. Eaton, J. P. Johnston, Turbulent flow reattachment: An experimental study of the flow and structure behind a backward-facing step. Mechanical Engineering Department. Rep. MD-39. Stanford University, Stanford, California. 1980.
[30] R. L. Simpson, Aspects of turbulent boundary-layer separation, Progress in Aerospace Sciences, Vol. 32, No. 5, pp. 457-521, 1996.
[31] T. Troutt, S. Bhattacherjee, B. Scheelke, Modification of vortex interactions in a reattaching separated flow, The American Institute of Aeronautics and Astronautics Journal, Vol. 24, No. 4, pp. 623-629, 1986.