[1] G. P. Sutton, Rocket Propulsion Elements, 7th Edition, pp. 127-149, New York: Wiley & Sons, 1992.
[2] L. J. Alpinieri, R. H. Adams, Flow separation due to jet pluming, AIAA Journal, Vol. 4, No. 10, pp. 1865-1866, 1966.
[3] J. M. Kineberg, T. Kubota, L. Lees, Theory of exhaust plume/boundary layer interactions at supersonic speeds, AIAA Journal, Vol. 10, No. 5, pp. 581-588, 1972.
[4] G. D. Kuhn, Calculation of separated turbulent flows on axisymmetric after bodies including exhaust plume effects, AIAA Journal, Vol. 18, No. 3, pp. 235-240, 1980.
[5] R. J. McGhee, Some Effects of Jet Pluming on the Static Stability of Ballistics Bodies at a Mach Number of 6, NASA No. TD- 3698, 1966.
[6] R. J. McGhee, J. A. Martin, Exploratory Investigation of Flow Field Resulting from Forward-Facing Nozzles Exhausting Near a Large Cylindrical Body at Free-Stream Mach Numbers of 3.0 to 6.0 , NASA No. TND-5030, 1969.
[7] R. J. McGhee, Jet Plume Induced Flow Separation on Axisymmetric Bodies at Mach numbers of 3.00, 4.50 and 6.00, NASA No. TM X-2059, 1970.
[8] E. V. Myshenkov, Regimes of laminar lateral flow separation due jet exhaust, Fluid Dynamics, Vol. 29, No. 1, pp. 103-107, 1994.
[9] A. Talebi, Reduction of aircraft plume infrared signature using geometric changes in the exhaust nozzle, Journal of Passive Defense Quarterly, Vol. 3, No. 4, pp. 37-43, 2012. (in Persian فارسی(
[10] H. Ahmadikia, S. H. Talebi, The fluctuating flow of ultrasound on a rocket with plume, The 10nd Dynamic Fluid Conference, Yazd, Iran, October 31- November 2, 2006. (in Persian فارسی(
[11] M. Farshchi, A. Gorgi, Numerical analysis of the flow field at the end of the body of the missiles with the output jet, The 2 nd Dynamic Fluid Conference, Esfahan, Iran, February 4-6, 1993. (In Persian فارسی(
[12] S. H. Talebi, E. Shirani, Numerical simulation of supersonic jet with turbulent model k-ε, The 8nd Dynamic Fluid Conference, Tabriz, Iran, September 8-10, 2002. (in Persian فارسی (
[13] J. Kim, J. Woo Lee, J. Choi, K. Kim, Investigation on the characteristics of plume induced flow separation and wall heat transfer, Journal of Spacecraft and Rockets, Vol. 49, No. 1, pp. 189-192, 2012.
[14] S. Saha, S. Rathod, M. S. R Chandra Murty, P. K. Sinha, Debasis Chakraborty, Numerical simulation of base flow of a long range flight vehicle, Journal of Acta Astronautica, Vol. 74, No. 1, pp. 112–119, 2012.
[15] ANSYS Fluent Theory Guide chapter 4: Turbulence, ANSYS, Inc., 275 Technology Drive Canonsburg, PA 15317, 2017.
[16] J. Lee, J. Kim, K. Kim, Effects of Al2O3 particle on convective and radiative heat flux to rocket base surface, Seventh International Conference on Computational Fluid Dynamics, Big Island: Hawaii, pp. 103-111, 2012.
[17] K. Deere, A. Elmiligui, K. S. Abdol-Hamid, USM3D simulations of saturn v plume induced flow separation, Journal of Spacecraft and Rockets, Vol. 49, No. 4, pp. 679-690, 2012.
[18] C. Bauer, A. Koch, F. Minutolo, P. Grenard, Engineering model for rocket exhaust plumes verified by CFD results, 29th ISTS, Nagoya: Japan, 2-9 June , 2013.
[19] Y. K. Lee1, H. D. Kim, S. Raghunathan, A study of base drag optimization using mass bleed, 15th Australasian Fluid Mechanics Conference, Sydney: Australia, pp. 50- 59, 2004.
[20] M. Mehta, F. Canaba, S. B. Tashakkor, S. D. Smith, Base Heating Sensitivity Study for a 4-Cluster Rocket Motor Configuration in Supersonic Free Stream, TFAWS Patent NO. M11-0717, M11-0847 and M11-0848, 2011.