مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

ارتقاء تبدیل هیلبرت- هوانگ به کمک ویژگی‌های غیرخطی مبتنی بر آنتروپی جهت عیب-یابی سریع در یک سیستم شبیه ساز ارتعاشات تجهیزات دوار

نویسندگان
1 دانشگاه تربیت مدرس
2 تربیت مدرس
چکیده
هدف اصلی این مقاله، ارتقاتبدیل هیلبرت-هوانگ با استفاده از مزایای ویژگی های غیرخطی مبتنی بر آنتروپی، جهت حذف اثرات نویز اضافه شونده می‌باشد. به علاوه استفاده از ویژگی های غیر خطی مناسب، منجر به محدود شدن اطلاعات اضافی و رفع نیاز به روش های مختلف کاهش بعد در شناسایی عیب های یک سیستم دوار شده است. جهت ارتقاءتبدیل هیلبرت – هوآنگ تاثیر نویزهای اضافه شونده بر انواع مختلف ویژگی‌های مبتنی بر آنتروپی برای هر کدام از توابع مود ذاتی حاصل از الگوریتم تجزیه تجربی مود انباشته، مورد بررسی قرار می‌گیرد. با توجه به حساسیت آنتروپی تقریبی به نویز، یک شاخص ارزیابی برای انتخاب دامنه نویز اضافه شونده، براساس آنتروپی تقریبی و ضریب اطلاعات متقابل توابع مود ذاتی ارائه گردیده است. سپس با استفاده از مزایای آنتروپی جایگشت و آنتروپی طیف حاشیه‌ای هیلبرت در توصیف مشخصات سیگنال،آستانه‌ای برای شروع پیدایش عیب با توجه به مقادیر آنتروپی مهمترین تابع مود ذاتی-که دارای بیشترین ضریب اطلاعات متقابل می باشد-تعیین می گردد. نتایج نشان می‌دهد که این رویکرد می‌تواند برای تشخیص انحراف از حالت کارکرد سالم سیستم بدون توجه به نوع عیب، به کارگرفته شود. در مرحله بعد برای شناخت نوع عیب، از طیف درجات بالاتر استفاده شده است به نحوی که بای اسپکتروم پوش به دست آمده از اعمال تبدیل هیلبرت به مهمترین تابع مود ذاتی،محاسبه شده و با درنظرگرفتن کوپلینگ میان فرکانس‌های مشخصه عیب و فرکانس دور، عیوب ناهم‌محوری و نابالانسی روتور یک سیستم شبیه ساز ارتعاشات تجهیزات دوارشناسایی گردیده است.
کلیدواژه‌ها

عنوان مقاله English

Improving of the Hilbert-Huang transform using the nonlinear entropy-based features for early fault detection of a rotating machinery vibration simulator system

نویسندگان English

Mohammad Sadegh Hoseinzadeh 1
Siamak Esmaeilzadeh Khadem 2
Mohammad Saleh Sadooghi 2
1 tarbiat modares university
2 tarbiat modares university
چکیده English

The main objective is to improve Hilbert-Huang transform using the advantages of non-linear entropy-based features in the time and frequency domain to reduce noise effects. In addition, applying appropriate entropy-based features lead to restrict information redundancy and overcome the need for dimension reduction, in the fault detection of a rotating system. To modify the Hilbert-Huang method, the effect of added noise on various types of nonlinear entropy-based features is investigated for each intrinsic mode functions (IMFs) which extracted by ensemble empirical mode decomposition algorithm. Considering the approximate entropy (ApEn) sensitivity to noise, an evaluation index is presented for selecting the proper amplitude of the added noise based on the approximate entropy and mutual information coefficient of the different IMFs. Subsequently, taking into account the high capability of permutation entropy (PeEn) and marginal Hilbert spectrum entropy (MHE) in the signal characteristic, a threshold is determined for fault detection based on their values associated to the main IMF which has the highest value of mutual information coefficient. As a result, the permutation entropy values and marginal Hilbert spectrum entropy of the main IMF can be used for detection of any deviation from normal operation of the rotor bearings system, regardless of the fault type. Consequently, to determine the type of defect, the higher-order spectra have been used.The bi-spectrum of envelope is calculated. This bi-spectrum is employed to identify the coupling between the rotating frequency and fault-characteristic frequencies, for misalignment and unbalanced fault diagnosis of a rotating machinery vibration simulation system

کلیدواژه‌ها English

Vibration signal
Early fault detection
Hilbert-Huang transform
Nonlinear entropy-based features
High order spectra
[1] N. Tandom, A.Choudhury, A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings, Tribology International, Vol. 32, No. 8, pp. 469-480, 1999.
[2] Z. Feng, M. Liang, F. Chu, Recent advances in time–frequency analysis methods for machinery fault diagnosis: A review with application examples, Mechanical Systems and Signal Processing, Vol. 38, No. 1, pp. 165-205, 2013.
[3] S. Ramezan, O. Bahar, Identification of natural frequencies based on a new enhanced Hilbert-Huang transform, Modares Mechanical Engineering, Vol. 12, No. 3, pp. 123-132, 2012. (in Persianفارسی(
[4] Y. Zhang, B. Tang, X. Xiao, Time-frequency interpretation of multi frequency signal from rotating machinery using an improved Hilbert-Huang transform, Measurement, Vol. 82 , No. 2, pp. 221–239, 2016.
[5] S.D. Wu, P.H. Wu, C.W.Wu, J.J.Ding, C.C.Wang, Partly ensemble empirical mode decomposition: An improved noise-assisted method for eliminating mode mixing, Signal Processing, Vol. 96, No. 12, pp. 362–374, 2014.
[6] N. Tsakalozos, K.Drakakis, S.Rickard, A formal study of the nonlinearity and consistency of the empirical mode decomposition, Signal Processing, Vol. 92 , No. 9, pp. 1961–1969, 2012.
[7] Z. Wu, N.E. Huang, Ensemble empirical mode decomposition: A noiseassisted data analysis method, Advancedin Adaptive Data Analysis,Vol. 1, No. 1, pp. 1–41, 2009.
[8] W. Guo, P.W. Tse, A.Djordjevich, Faulty bearing signal recovery from large noise using a hybrid method based on spectral kurtosis and ensemble empirical mode decomposition, Measurement,Vol. 45, No. 5, pp. 1308–1322, 2012.
[9] J.R. Yeh, J.S. Shieh,N.E. Huang, Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method, Advances in Adaptive Data Analysis,Vol. 2, No. 2, pp. 135–156, 2010.
[10] Z. Wang, Z. Han, F. Gu, J.X. Gu, S. Ning, A novel procedure for diagnosing multiple faults in rotating machinery, ISA Transactions, Vol. 55, No. 8, pp. 208–218, 2015.
[11] X. Zhang, Y. Liang, J. Zhou, Y. zang, A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM, Measurement, Vol. 69, No. 6, pp. 164–179, 2015.
[12] L.Y. Zhao, L. Wang, R.Q. Yan, Rolling bearing fault diagnosis based on wavelet packet decomposition and multi-scale permutation, Entropy, Vol. 17, No. 9, pp. 6447-6461, 2015.
[13] X. Wang, C. Liu, F. Bi, X. Bi, K. Shao, Fault diagnosis of diesel engine based on adaptive wavelet packets and EEMD-fractal dimension, Mechanical Systems and Signal Processing, Vol. 41, No. 9, pp. 581–597, 2013.
[14] A.Soleimani, S. E. Khadem, Experimental fault detection of ball bearing using the chaotic behavior features of vibration signal, Modare Mechanical Engineering, Vol.15, No.2, pp.289-297, 2015. (InPersian فارسی(
[15] R. Yan, R.X.Gao, Approximate entropy as a diagnostic tool for machine health monitoring,Mechanical Systems and Signal Processing, Vol. 21, No. 2, pp. 824–839, 2007.
[16] G. Cheng, X. Chen, H. Li, P. Li, H. Liu, Study on planetary gear fault diagnosis based on entropy feature fusion of ensemble empirical mode decomposition, Measurement, Vol. 91, No. 5, pp. 140–154, 2016.
[17] Y. Tian, Z. Wang, C. Lu, Self-adaptive bearing fault diagnosis based on permutation entropy and manifold-based dynamic time warping, Mechanical Systems and Signal Processing, Vol. 94 , No. 4, pp.239-257, 2016.
[18] G. Cheng, X. Chen, H. Li, P. Li and H. Liu, Study on planetary gear fault diagnosis based on entropy feature fusion of ensemble empirical mode decomposition,Measurement, Vol. 91, No. 5, pp. 140–154, 2016.
[19] J. Singh, A. K. Darpe, S. P. Singh, Bearing damage assessment using JensenRényi Divergence based on EEMD,Mechanical Systems and Signal Processing, Vol. 87, No. 8, pp. 307-339, 2017.
[20] Y. Yu,C. A. Junsheng, Roller bearing fault diagnosis method based on EMD energy entropy and ANN,Journal of Sound and Vibration,Vol. 294, No. 5, pp.269-277,2006.
[21] R. Yan, Y. Liu, R.X. Gao, Permutation entropy: A nonlinear statistical measure for status characterization of rotary machines. Mechanical Systems and Signal Processing, Vol. 29, No. 13, pp. 474–484, 2012.
[22] Y. He, J. Huang, B. Zhang, Approximate entropy as a nonlinear feature parameter for fault diagnosis in rotating machinery,Measurement Science and Technology,Vol. 23, No. 4, pp. 045603, 2012.
[23] C. Lu, S. Wang, V. Makis, Fault severity recognition of aviation piston pump based on feature extraction of EEMD paving and optimized support vector regression model,Aerospace Science and Technology, Vol. 67, No. 4, pp. 105–117, 2017.
[24] R.U.Maheswari, R. Umamaheswari, Trends in non-stationary signal processing techniques applied to vibration analysis of wind turbine drive train – A contemporary survey, Mechanical Systems and Signal Processing, Vol. 85, No. 9, pp. 296–311, 2017.
[25] R.U. Maheswari, R. Umamaheswari, Application ofhigherorderspectralfeaturesandsupportvector machines forbearingfaultsclassification, ISA Transactions, Vol. 54, No. 6, pp. 193– 206,2015.
[26] P. Nguyen, M. Kang, J. M. Kim, B. H. Ahn, J. M. Ha, B. K. Choi. Robust condition monitoring of rolling element bearings using de-noising and envelope analysis with signal decomposition techniques,Expert Systems with Applications, Vol. 42, No. 7, pp. 9024-9032, 2015.
[27] A. Boudiaf,A. Moussaoui, A. Dahane,I. Atoui, A comparative study of various methods of bearing faults diagnosis using the case Western Reserve University data,Journal of Failure Analysis and Prevention, Vol. 16, No. 3, pp. 271-284, 2016.
[28] M. C. Pan, W. C. Tsao, Using appropriate IMFs for envelope analysis in multiple fault diagnosis of ball bearings,International Journal of Mechanical Sciences, Vol. 69, No. 2, pp.114-124, 2013.
[29] S.M. Pincus, Approximate Entropy as a measure of system complexity, Proceedings of the National Academy of Sciences of the United States of America, Vol. 88, No. 8, pp. 2297–2301, 1991.
[30] K. Fu, J. Qu, Y. Chai, T. Zou, Hilbert marginal spectrum analysis for automatic seizure detection in EEG signals,Biomedical Signal Processing and Control, Vol. 18, No. 7, pp. 179–185, 2015.
[31] L. Saidi, J.B. Ali, F. Fnaiech, Bi-spectrum based-EMD applied to the nonstationary vibration signals for bearing faults diagnosis, ISA Transactions, Vol. 53 , No. 5, pp. 1650–1660, 2014.
[32] S. Osman, W. Wang, An enhanced Hilbert–Huang transform technique for bearing condition monitoring,Measurement Science and Technology, Vol. 24 , No. 8, pp. 085004, 2013.
[33] X. Xue, J. Zhou, A hybrid fault diagnosis approach based on mixed-domain state features for rotating machinery, ISA Transactions, Vol. 66, No. 3, pp. 284–295, 2017.
[34] M.S. Sadooghi, S.E. Khadem, S. Bab, Dynamic behavior investigation of a rotating system by two methods of nonlinear modeling and finite element, Modares MechanicalEngineering, Vol. 16, No. 8, pp. 303-314, 2016. (in (فارسی Persian