[1] N. Arai, Y. Itaya, M. Hasatani, Development of a Volume heat-trap' type Solar collector using a fine-particle semitransparent liquid suspension (FPSS) as a heat Vehicle and heat storage medium, Solar Energy, Vol. 32, No. 1, pp. 49-56, 1984.
[2] R. A. Taylor, P. E. Phelan, T. P. Otanicar, R. Adrian, R. Prasher, Nanofluid optical property characterization: Towards efficient direct absorption solar collectors, Nanoscale Research Letters, Vol. 6, No. 1, pp. 225-236, 2011.
[3] J. E. Minardi, H. N. Chuang, Performance of a blackliquid flat-plate solar collector, Solar Energy,Vol.17, pp. 179–83, 1975.
[4] H. Tyagi, P. Phelan, R. S. Prasher, Predicted efficiency of nanofluid-based direct absorption solar receiver, Journal of Solar Energy Engineering, Vol. 131, pp. 041004-1:7, 2009.
[5] T. P. Otanicar, P. E. Phelan, R. S. Prasher, G. Rosengarten, R. A. Taylor, Nanofluid-based direct absorption solar collector, Journal of Renewable and Sustainable Energy, Vol. 2, pp. 033102-1:13, 2010.
[6] T. Otanicar, J. Golden, Comparative environmental and economic analysis of conventional and nanofluid solar hot water technologies, Environmental Science and Technology, Vol. 43, No. 15, pp. 6082-7, 2009.
[7] T. Otanicar, R. A. Taylor, P. E. Phelan, R. Prasher, Impact of size and scattering mode on the optimal solar absorbing nanofluid, Proceedings of the ASME 3rd International Conference on Energy Sustainability, ASME, San Francisco, California, USA, 19-23 July, 2009.
[8] L. Mu, Q. Zhu, L. Si, Radiative properties of nanofluids and performance of a direct solar absorber using nanofluids, Proceedings of the ASME 2nd International Conference on Micro/Nanoscale Heat & Mass Transfer, Vol 1, Shanghai, China, December 18–21, 2009.
[9] E. P. B. Filho, O. S. H. Mendoza, C. L. L. Beicker, A. Menezes, D. Wen, Experimental investigation of a silver nanoparticle-based direct absorption solar thermal system, Energy Conversion and Management, Vol. 84, pp. 261–267, 2014.
[10] S. Parvin, R. Nasrin, M. A. Alim, Heat transfer and entropy generation through nanofluid filled direct absorption solar collector, International Journal of Heat and Mass Transfer, Vol. 71, pp. 386-95, 2014.
[11] H. K. Gupta, G. D. Agrawal, J. Mathur, An experimental investigation of a low temperature Al2O3-H2O nano fluid based direct absorption solar collector, Solar Energy, Vol. 118, pp. 390–396, 2015.
[12] H. K. Gupta, G. D. Agrawal, J. Mathur, Investigations for effect of Al2O3– H2O nano fluid flow rate on the efficiency of direct absorption solar collector, Case Studies in Thermal Engineering, Vol. 5, pp. 70–78, 2015.
[13] M. Karami, M. A. Akhavan-Bahabadi, S. Delfani, M. Raise, Experimental investigation of CuO nano fluid-based Direct Absorption Solar Collector for residential applications, Renewable and Sustainable Energy Reviews, Vol. 52, pp. 793–801, 2015.
[14] Thermal solar systems and components – solar collectors – part 2:test methods, English version of DIN EN 12975-2:2006.
[15] S. Delfani, M. Karami, M. A. Akhavan-Behabadi, Performance characteristics of a residential-type direct absorption solar collector using MWCNT nanofluid, Renewable Energy, Vol. 87, pp. 754–764, 2016.
[16] M. Vakili, S. M. Hosseinalipour, S. Delfani, S. Khosrojerdi, M. Karami, Experimental investigation of graphene nano platelets nano fluid-based volumetric solar collector for domestic hot water systems, Solar Energy, Vol. 131, pp. 119–130, 2016.
[17] J. Sarkar, P. Ghosh, A. Adil, A review on hybrid nanofluids: Recent research, development and applications, Renewable and Sustainable Energy Reviews, Vol. 43, pp. 164–177, 2015.
[18] L. S. Sundar, P. Bhramara, N. T. R. Kumar, M. K. Singh, A. C. M. Sousa, Experimental heat transfer, friction factor and effectiveness analysis of Fe3O4 nanofluid flow in a horizontal plain tube with return bend and wire coil inserts, International Journal of Heat and Mass Transfer, Vol. 109, pp. 440–453, 2017.
[19] B. Du , J. Li , B. M. Wang, Z. T. Zhang, Preparation and breakdown strength of Fe3O4 nanofluid based on transformer oil, International Conference on High Voltage Engineering and Application (ICHVE), 2012.
[20] K. Khoshnevis, M. Barkhi, D. Zare, D. Davoodi, M. Tabatabaei, Preparation and characterization of CTAB-Coated Fe3O4 nanoparticles, Journal of Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, Vol. 42, pp. 644-648, 2012.
[21] M. Karami, M. A. Akhavan Bahabadi, S. Delfani, A. Ghozatloo, A new application of carbon nanotubes nanofluid as working fluid of lowtemperature direct absorption solar collector, Solar Energy Materials and Solar Cells, Vol. 121, pp. 114–118, 2014.
[22] X. Q. Wang, A. S. Mujumdar, Heat transfer characteristics of nanofluids: A review, International Journal of Thermal Science, Vol. 46, pp. 1-19, 2007.
[23] J. A. Eastman, U. S. Choi, S. Li, L. J. Thompson, S. Lee, Enhanced thermal conductivity through the development of nanofluids, Proceedings of Materials Research Society Symposium, Boston, MA, USA. 457, pp. 3-11, 1997.
[24] P. Prasher, D. Song, J. Wang, P. Phelan, Measurements of nanofluid viscosity and its implications for thermal applications, Applied Physics Letters, Vol. 89, No.13, 2006.