مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

روش طراحی سیستمی سامانه مدیریت پیشرانه (PMD) در شرایط جاذبه صفر

نویسندگان
1 پژوهشگاه هوافضا
2 کارشناسی ارشد مهندسی هوافضا
چکیده
هدف از ارائه مقاله، روش طراحی سیستمی سامانه مدیریت پیشرانه یا PMD مخزن حامل سوخت هیدرازین برای استفاده در شرایط جاذبه ناچیز (صفر) می‌‌باشد. برای این منظور، روندنمای طراحی سیستمی پیشنهادی برای طراحی سامانه مدیریت پیشرانه، دارای سه مرحله اصلی می‌‌باشد که عبارتنداز : مرحله اول، طراحی و مدل‌سازی مخزن؛ مرحله دوم، طراحی و مدل‌سازی سامانه مدیریت پیشرانه و شبیه‌سازی و مرحله سوم، تحلیل رفتار سوخت درون مخزن. در این روندنما با توجه به ورودی‌های ماموریتی مربوط به سامانه، طراحی مخزن، سامانه مدیریت پیشرانه و تحلیل رفتار سوخت درون مخزن به صورت جامع پرداخته شده‌است به گونه‌ای که در هر گام در صورتیکه نتایج تایید نشود، با تغییر پارامترهای مرتبط، شرایط مطلوب احراز می ‌شود. مدل‌سازی اولیه مخزن و سامانه مدیریت پیشرانه در نرم افزار سالیدورک صورت پذیرفته‌است. شبیه-سازی‌های عددی به منظور بررسی عملکرد PMD و اثبات پدیده مویینگی برای سوخت‌رسانی پایدار در شرایط بی‌وزنی انجام شده‌است. از روش‌های عددی برای تحلیل مخزن و رفتار سوخت درون مخزن به همراه PMD برای بهینه‌سازی پارامترهای طراحی سامانه استفاده شده‌است. بدینصورت که، برای بررسی رفتار سوخت، سامانه مدیریت پیشرانه با استفاده از روش حجم سیال (VOF) در نرم افزار انسیس مدل‌سازی، شبکه‌بندی و تحلیل شده‌‌است. پارامترهای بهینه‌سازی PMD با هدف دست‌یابی به بیشترین مقادیر دبی جرمی و نرخ حجمی جریان صورت می‌‌پذیرد. به عبارت دیگر، هدف دستیابی به بیشترین مقادیر سوخت ورودی به PMD می‌‌باشد. در نهایت، صحه‌گذاری نتایج (عملکرد سامانه مدیریت پیشرانه) با مقایسه با نتایج تجربی و نمونه موجود موجود صورت ‌پذیرفته‌است.
کلیدواژه‌ها

عنوان مقاله English

Propellant Management Device (PMD) System Design Methodology in Zero Gravity Condition

نویسنده English

Ali Alipour 2
2 Aerospace Engineering M.Sc. graduate
چکیده English

The purpose of this article is to system design methodology of Propellant Management Device (PMD) for hydrazine fuel tank which used in low (zero) gravity conditions. To this end, the suggestion system design flowchart has three main steps that concluded: step one, Tank design and modeling; step two, PMD design and modeling and step three, stored fuel treatment simulation and analysis. In the design flowchart has performed the result of each step based on mission inputs. Therefore, rejected results in each step led to vary the related parameters. Thus Solid Works software is used to primary PMD and tank modeling. Then, numerical simulation is performed to consider PMD's performance and to illustrate the capillary phenomenon for continues fuel transferring in zero-gravity conditions.Also, numerical methods are used to analysis of the tank and the fuel behavior inside the tank with PMD to optimize system design parameters. Hence, Ansys software used to finalize modelling, analysis, meshing and consideration of fuel behavior in PMD by utilizing the Volume Of Fluid (VOF) method. The optimal system parameters related to specifications of PMD with maximum performance of mass and volume flow rates in zero gravity. In conclusion, by comparing the results (PMD performance) with experimental and existing results will be verified.

کلیدواژه‌ها English

System design
Propellant management Device (PMD)
Numerical analysis
Hydrazine
Fuel tank
[1] D. E. Jaekle, Propellant management device conceptual design and analysis: Vanes, AIAA/SAE/ASME/ASEE 27 Joint Propulsion Conference, Sacramento, California, June 24-26, 1991.
[2] D. E. Jaekle, Propellant management device conceptual design and analysis: Sponges, AIAA/SAE/ASME/ASEE 29 Joint Propulsion Conference, Montery, California, June 28-30, 1993.
[3] D. E. Jaekle, Propellant management device conceptual design and analysis: Galleries, AIAA/SAE/ASME/ASEE 33 Joint Propulsion Conference, Montery, California, June 28-30, 1997.
[4] D. E. Jaekle, Propellant management device conceptual design and analysis: Traps and troughs, AIAA/SAE/ASME/ASEE 31 Joint Propulsion Conference, San Diego, California, June 10-12, 1995.
[5] W. D. Tam, J. Jaekle, Design and manufacture of an oxidizer tank with surface tension PMD, 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Arizona, United States, July 10-13, 2005.
[6] W. H. Tam, I. Ballinger, D. E. Jaekle, Conceptual design of space efficient tanks, 42nd AIAA Joint Propulsion Conference & Exhibit, Sacramento, California, July 9-12, 2006.
[7] W. H. Tam, I. Ballinger, Surface tension PMD tank for on orbit fluid transfer, 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. & Exhibit, Hartford, Connecticut, July 21-23, 2008.
[8] Y. K. Chen, S. H. Collicott, Experimental study on the capillary flow in the vane-wall gap geometry, 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, Jan 5-8, 2004.
[9] R. H. Estes, Development and implementation of a process for producing a highly wettable aluminum PMD for the GPM hydrazine tank, 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Atlanta, Georgia, July 30 –Aug, 01, 2012.
[10] B. Lenahen, A Bernier, S. Gangadharan, A computational investigation for determining the natural frequencies and damping effects of diaphragm implemented spacecraft propellant tanks, 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Atlanta, Georgia, July 30 - Aug 01, 2012.
[11] W. H. Tam, M. Hersh, I. Ballinger, Hybrid propellant tanks for spacecraft and launch vehicles, 39th AIAA Propulsion Conference, Alabama, United States, 2003.
[12] W. Tam, S. Wiley, K. Dommer, L. Mosher, D. Persons, Design and manufacture of the messenger propellant tank assembly, 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Indiana, United States, July 7-10, 2002.
[13] G. Kawahara, S. McCleskey, Titanium-Lined, Carbon Composite Overwrapped Pressure Vessel, 32th AIAA/ASME/SAE/ASEE, Joint Propulsion Conference, Lake Buena Vista, July 1-3, 1996.
[14] W. Tam, I. Ballinger, J. Kuo, W. Lay, S. McCleskey, P. Morales, Z. Taylor, S. Epstein, Design and manufacture of a composite overwrapped xenon conical pressure vessel, 32nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Lake Buena Vista, FL, July 1-3, 1996.
[15] W. Tam, A. Jackson, E. Nishida, Y. Kasai, A. Tsujihata, K. Kajiwara, Design and manufacture of the ETS VIII xenon tank, 36th AIAA/ASME/SAE/ASEE, Joint Propulsion Conference and Exhibit, Alabama, United States, July 17- 19, 2000.
[16] W. Tam, P. Griffin, A. Jackson, Design and manufacture of a composite overwrapped pressurant tank assembly, 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. & Exhibit, July 7-10, 2002.
[17] W. Tam, I. Ballinger, Propellant tank with surface tension PMD for tight center-of-mass propellant control, 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. & Exhibit, Hartford, Connecticut, July 21-23, 2008.
[18] J. T. Liu, C. Zhou, Y. L. Wu, B. T. Zhuang, Y. Li, Numerical investigation of performance of vane-type propellant management device by VOF methods, International Symposium of Cavitation and Multiphase Flow, 18- 21, Beijing, China, October, 2014.
[19] Q. Hu, Y. Li, H. L. Pan, J. T Liu, B. T Zhuang, Numerical analysis and experiment research on fluid orbital performance of vane type propellant management device, International Symposium of Cavitation and Multiphase Flow, 18-21, Beijing, China, October, 2014.
[20] Y. Alhendal, A. Turan, W. Aly, VOF simulation of marangoni flow of gas bubbles in 2D-axisymmetric column, International Conference on Computational Science, University of Amsterdam, The Netherlands, May 31 - June 2, 2010.
[21] D. Sances, E. Riddle, S. Gangadharan, J. Sudermann, B. Marsell, CFD fuel slosh modeling of fluid-structure interaction in spacecraft propellant tanks with diaphragms, 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Orlando, Florida, Apr. 12, 2010.
[22] M. Brandon, G. Sathya, C. Yadira, S. James, S. Keith, Ristow. James. E, A CFD approach to modeling spacecraft fuel slosh, 47th AIAA Aerospace Sciences Meeting, Orlando, Florida, Jan 5-8, 2009.
[23] W. Tam, P. Griffin, Design and manufacture of a composite overwrapped pressurant tank assembly, 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Joint Propulsion Conferences, Indianapolis, Indiana, July 7-10, 2002.
[24] J. Benton, I. Ballinger, A. Ferretti, N. Ierardo, Design & manufacture of a high performance high mass efficient gas tank for the vega avum, 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Joint Propulsion Conferences, July, 2007.
[25] M. Ayub, Z. Ahmer, S. Khan, M. Shah, Mechanical behavior characterization of aluminium based honey comb structure by optimized modeling and numerical simulations, Journal of Space Technology, Vol. 1, No. 1, pp. 26-33, 2011.
[26] H. Khan, A. Israr, Design, Modeling and analysis of low earth orbit satellite, The Second TSME International Conference on Mechanical Engineering, Krabi, Thailand, October 19-21, 2011.
[27] Kreppel, Samantha, Investigation of propellant sloshing and zero gravity equilibrium for the orion service module propellant tanks, 38th COSPAR Scientific Assembly, Bremen, Germany, July 18-15, 2010.
[28] Liu. Xiaolin, Y. Huang, Li. Guangyu, CFD simulation of capillary rise of liquid in cylindrical container with lateral vanes, Sixth International Symposium on Physics of Fluids (ISPF6) International Journal of Modern Physics Conference Series, Vol. 42, pp. 745-756, 2016.
[29] R. Malekfa, A. Cherag, G Ahmadi, Computational simulation of marangoni convection under microgravity condition, Scientia Iranica Transaction B:Mechanical Engineering, Vol. 16, No. 6, pp. 513-524, 2009.
[30] A. Brakke, The surface evolver, Experimental Mathematics, Vol. 1, No. 2, pp. 141-165, 1992.
[31] E. Perez, Soyuz at the guiana space centre user’s manual, Issue 2 – Revision 0, March, 2012.
[32] H. Naseh, A. Alipour, Propellant management device (PMD) design optimization of hydrazine fuel tank, Modares Mechanical Engineering, Vol. 17, No. 7, pp. 152-160, 2017. (in Persian فارسی(