مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

مطالعه عددی جابجایی آزاد سیالات ضخیم شونده غیرنیوتنی مدل پاورلا در یک محفظه نامتقارن تحت زوایای تمایل مختلف

نویسندگان
1 مکانیک، دانشکده فنی و مهندسی، دانشگاه پیام نور ، شهرکرد ، ایران
2 عضو هیئت علمی مکانیک دانشکده فنی و مهندسی، دانشگاه شهرکرد، شهرکرد، ایران
چکیده
در این تحقیق، به بررسی عددی انتقال حرارت جابجایی سیال غیر‌نیوتنی ضخیم شونده مدل پاورلا در یک محفظه بسته نا‌متقارن با نسبت منظری ثابت پرداخته شده است. در بسیاری تحقیقات پیشین، محفظه انتقال حرارت متقارن و تحت یک زاویه مشخص در نظر گرفته شده است. در این مطالعه معادلات حاکم به روش حجم محدود جبری شده و با استفاده از الگوریتم سیمپل سی حل شده است. برای اطمینان از صحت نتایج، نتایج کد نوشته شده را با نتایج مقالات دیگر در زمینه سیالات نیوتنی و غیر نیوتنی مقایسه شده است. اثر زاویه تمایل محفظه و عدد رایلی بر انتقال حرارت و میدان جریان بررسی و مشاهده گردید که در اعداد رایلی کوچکتر از تغییر زاویه تمایل تاثیری محسوسی بر انتقال حرارت نداشته و در اعداد رایلی بزرگتر از در زاویه کمترین انتقال حرارت را نسبت به سایر زوایا داریم. همچنین نتایج سیال نیوتنی و غیرنیوتنی ضخیم شونده با یکدیگر مقایسه شدند. نتایج نشان می‌دهد که انتقال حرارت توسط سیالات غیر نیوتنی ضخیم شونده علاوه بر سایر پارامترها وابسته به n می‌باشد و در حالتی که زاویه تمایل محفظه باشد، انتقال حرارت سیالات نیوتنی و غیر نیوتنی ضخیم شونده برابر است. با توجه به رفتار غیر نیوتنی سیال و بی بعدسازی مساله، عدد بی بعد جدیدی با نامگذاری عدد پرانتل توسعه یافته〖(Pr〗^*) در معادلات ظاهر گردید که به خواص سیال، هندسه جریان و توان پاورلا وابسته می‌باشد. مقدار بهینه آن در〖(Pr〗^*=0.07) مشاهده شد که در آن انتقال حرارت از محفظه مورد نظر به حد ماکزیمم خود رسید.
کلیدواژه‌ها

عنوان مقاله English

Numerical Investigation of Free Convection of Non-Newtonian Thickening Power Law Fluids in an Asymmetrical Enclosure under Various Inclinations

نویسندگان English

iman pishkar dehkordi 1
behzad ghasemi 2
1 mechanics, Faculty of Engineering, Payamenoor university, shahrekord, iran
2 mechanics, Faculty of Engineering, shahrekord university, shahrekord, iran
چکیده English

Free convection heat transfer of a non-Newtonian thickening power law fluid in a closed asymmetrical enclosure with fixed aspect ratio was investigated in this study. Many of the previous studies, addressed the case with symmetrical heat transfer enclosure and for a given inclination. The governing equations were established by the finite volume method and solved by the SIMPLEC algorithm. In order to evaluate the code, its results were compared to those of other papers in the field of Newtonian and non-Newtonian fluids. The impact of the enclosure inclination and the Rayleigh number on the heat transfer and the flow field were investigated. It was found that for Rayleigh numbers smaller than , inclination has little impact on heat transfer, while at Rayleigh numbers larger than , the lowest heat transfer was observed at an angle of . Moreover, the results pertaining to Newtonian and non-Newtonian thickening fluids were compared. The results show that heat transfer by thickening non-Newtonian fluids, in addition to other parameters, depends on the parameter (n) and in the case of the angle of inclination , the heat transfer of Newtonian and non-Newtonian thickening fluids is equal. Considering the non-Newtonian behavior of the fluid and nondimensionalization of the problem, a new dimensionless number known as the extended Prandtl number 〖(Pr〗^*) appeared in the equations that depends on fluids characteristics, flow geometry, and the power law exponent . Its optimal value was observed at 〖(Pr〗^*=0.07) where heat transfer from the enclosure was at maximum.

کلیدواژه‌ها English

Free convection heat transfer
Asymmetrical enclosure
Non-newtonian thickening power law fluid
Extended Prandtl number
[1] E. Abu-Nada, H. F. Oztop, Effects of inclination angle on natural convection in enclosures filled with Cu–water nanofluid. International Journal of Heat and Fluid Flow. Vol. 30, No. 4, pp. 669–678, 2009.
[2] E. Abu-Nada, Z. Masoud, H. F. Oztop, A. Campo, Effect of nanofluid variable properties on natural convection in enclosures. International Journal of Thermal Sciences, Vol. 49, No. 3, pp. 479–491, 2010.
[3] Y. Varol, H. F. Oztop, A. Koca, Effects of inclination angle on conduction—natural convection in divided enclosures filled with different fluids. International Communications in Heat and Mass Transfer. Vol. 37, No. 2, pp. 182–191, 2010.
[4] S.M. Aminossadati, B. Ghasemi, The effects of orientation of an inclined enclosure on laminar natural convection. International Journal of Heat and Technology, Vol. 23, No. 2, pp. 43–49, 2005.
[5] M. Rahman, M. A. R. Sharif, Numerical study of laminar natural convection in inclined rectangular enclosures of various aspect ratios, Numerical Heat Transfer: Part A: Applications, Vol. 44, No. 4, pp. 355–373, 2003.
[6] M. Lamsaadi, M. Naimi, M. Hasnaoui, Natural convection heat transfer in shallow horizontal rectangular enclosures uniformly heated from the side and filled with non-Newtonian power law fluids, Energy conversion and Management, Vol. 47, No. 15, pp. 2535–2551, 2006.
[7] O. Turan, N. Chakraborty, R. J. Poole, Laminar natural convection of Bingham fluids in a square enclosure with differentially heated side walls, Journal of Non-Newtonian Fluid Mechanics, Vol. 165, No. 15, pp. 901–913, 2010.
[8] I. Vinogradov, L. Khezzar, D. Siginer, Heat transfer of non-Newtonian dilatant power law fluids in square and rectangular cavities, Journal of Applied Fluid Mechanics, Vol. 4, No. 2–s 1, pp. 37–42, 2011.
[9] M. H. Matin, I. Pop, S. Khanchezar, Natural convection of power-law fluid between two-square eccentric duct annuli, Journal of Non-Newtonian Fluid Mechanics, Vol. 197, pp. 11–23, 2013.
[10] G. Bin Kim, J. M. Hyun, H. S. Kwak, Transient buoyant convection of a power-law non-Newtonian fluid in an enclosure, International Journal of Heat and Mass Transfer, Vol. 46, No. 19, pp. 3605–3617, 2003.
[11] R. A. Lemus-Mondaca, N. O. Moraga, J. Riquelme, Unsteady 2D conjugate natural non-Newtonian convection with non-Newtonian liquid sterilization in square cavity, International Journal of Heat and Mass Transfer, Vol. 61, pp. 73–81, 2013.
[12] A. Guha, K. Pradhan, Natural convection of non-Newtonian power-law fluids on a horizontal plate, International Journal of Heat and Mass Transfer, Vol. 70, pp. 930–938, 2014.
[13] G.H.R. Kefayati, Simulation of non-Newtonian molten polymer on natural convection in a sinusoidal heated cavity using FDLBM, Journal of Molecular Liquids, Vol. 195, pp. 165–174, 2014.
[14] H. Zhang, T. Xu, X. Zhang, L. Zheng, Y. Wang, Y. Zong, Numerical study on the skin friction and heat transfer coefficient of non-newtonian power law fluid in boundary layer, Procedia Engineering, Vol. 121, pp. 824–829, 2015.
[15] N. O. Moraga, G. P. Parada, D. A. Vasco, Power law non-Newtonian fluid unsteady conjugate three-dimensional natural convection inside a vessel driven by surrounding air thermal convection in a cavity, International SJournal of Thermal Sciences, Vol. 107, pp. 247–258, 2016.
[16] A. N. Mohammad Mohsen Shahmardan, M. Norouzi, Numerical simulation of non-Newtonian fluid flows through a channel with a cavity, Modares Mechanical Engineering, Vol. 14, No. 6, pp. 35–40, 2014.
[17] O. Turan, A. Sachdeva, N. Chakraborty, R. J. Poole, Laminar natural convection of power-law fluids in a square enclosure with differentially heated side walls subjected to constant temperatures, Journal of NonNewtonian Fluid Mechanics, Vol. 166, No. 17, pp. 1049–1063, 2011.
[18] M. Ohta, M. Ohta, M. Akiyoshi, E. Obata, A numerical study on natural convective heat transfer of pseudoplastic fluids in a square cavity, Numerical Heat Transfer: Part A: Applications, Vol. 41, No. 4, pp. 357–372, 2002.
[19] R. P. Chhabra, Bubbles, Drops, and Particles in Non-Newtonian Fluids, CRC press, Second Edittion, pp. 9-40, New York, Taylor & Francis Group, 2006.
[20] S. Patankar, Numerical Heat Transfer and Fluid Flow, CRC press, pp. 50- 130,New York, McGRAW-HILL book company, 1980.
[21] S. Habchi, S. Acharya, Laminar mixed convection in a partially blocked, vertical channel, International Journal of Heat and Mass Transfer, Vol. 29, No. 11, pp. 1711–1722, 1986.
[22] F. Irgens, Continuum Mechanics, pp. 230-276, Berlin, Heidelberg, Springer Science & Business Media, 2008.