مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

شبیه‌سازی گرمایش غیر فعال دیوار خورشیدی و پیش‌بینی دما با شبکه عصبی مصنوعی و مدل تطبیقی عصبی – فازی (انفیس)

نویسندگان
1 کارشناسی ارشد، مهندسی مکانیک، دانشگاه شهرکرد، شهرکرد
2 دانشیار گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه شهرکرد، شهرکرد
چکیده
در این مقاله، گرمایش هوا در فضای داخلی اتاق توسط دیوار خورشیدی (ترومب) با در نظر گرفتن هدایت حرارتی این دیوار، به صورت عددی شبیه‌‌سازی شده است. معادلات مومنتوم و انرژی به روش حجم کنترل جبری شده‌اند و به کمک الگوریتم سیمپل به صورت همزمان حل می‌شوند. در ابتدا یک مدل مرجع معرفی و نتایج آن ارائه شده است و سپس با استفاده از این مدل مرجع، پارامتر‌های موثر بر کارایی دیوار بررسی شده و در نهایت بهینه‌ترین هندسه برای داشتن دیوار خورشیدی با بهترین عملکرد انتخاب شده است. همچنین جهت افزایش کارآیی، فین‌هایی مستطیل شکل بر روی سطح جاذب دیوار قرار گرفته است. نتایج حاصل شده نشان می‌دهد دیوار خورشیدی با فین مستطیلی در تمامی فواصل هوایی بهتر از دیوار ساده عمل می‌کند و به طور نمونه در فاصله هوایی برابر 1 متر، دمای اتاق با وجود فین‌های مستطیلی تقریبا1.24 درصد بیشتر از دیوار ترومب ساده است. در ادامه با استفاده از شبکه عصبی مصنوعی و انفیس میزان افزایش دمای اتاق با افزایش تعداد فین‌ها روی دیوار پیش‌‌بینی شده است. شبکه عصبی به گونه‌ای آموزش داده شد که بتواند دمای میانگین اتاق را به تعداد فین‌های روی سطح جاذب دیوار خورشیدی وابسته سازد. نتایج به دست آمده و مقایسه مقادیر مربع میانگین خطای استاندارد و مربع مجذور میانگین خطا نشان داد مدل انفیس با مقدار مربع میانگین خطای استاندارد برابر 0.742599 نسبت به شبکه عصبی با مقدار مربع میانگین خطای استاندارد برابر 1.1 در پیش‌بینی دما کارآیی مناسب‌تری دارد.
کلیدواژه‌ها

عنوان مقاله English

Simulation of passive heating solar wall and prediction the temperature by Artificial Neural Networks and Adaptive Neuro-Fuzzy model (ANFIS)

نویسندگان English

Akram Jahanbakhshi 1
Afshin Ahmadi Nadooshan 2
1 Department of Mechanical Engineering, Shahrekord University, Shahrekord, Iran
2 Mechanical Engineering Department, Engineering Faculty, Shahrekord University, shahrekord
چکیده English

In this paper, the interior air of the room heated by the solar wall (Trombe) with respect to Heat conduction in the wall is numerically simulated. Momentum and energy equations have been Algebraic with finite volume method and at the same time are solved with SIMPLE algorithm. First, a reference model is introduced and the results are presented and then with this reference model, the effective parameters on the performance of the wall were investigated and ultimately the most optimal geometry for the solar wall with the best performance was voted.As well, rectangular fins has been put on the surface of the absorbent wall, in order to increase its efficiency. The results show that solar wall with rectangular fins in all air gaps has better performance than plain wall and for example, with rectangular fins in the air gap equal to 1 m, room temperature is approximately 1.24% more than the simple Trombe wall. Then, using Artificial Neural Networks and ANFIS the values increase of room temperature by increasing the number of fins has been projected on the wall. The neural network was trained in such a way that the average temperature of the room depends on the number of fins on the surface of the absorbent the solar wall. The results compare mean squared error and root-mean-square error showed that ANFIS With the mean squared error equal to 0.742599 has good performance and acceptable accuracy compared with Neural Network With the mean squared error equal 1.1 to predict temperature.

کلیدواژه‌ها English

Numerical simulation
Trombe wall
artificial neural network
ANFIS
[1] F. Trombe, J. F. Robert, M. Cabanot, B. Sesolis, Concrete walls to collect and hold heat, Solar Energy, Vol. 2, No. 13, pp. 13-16, 1977.
[2] Iran Renewable Energy Organization (SUNA), http://www.satba.gov.ir/en/home
[3] Hu. Zhongting, He. Wei, Ji. Jie, Shengyao Zhang, A review on the application of Trombe wall system in buildings, Renewable and Sustainable Energy Reviews, Vol. 70, pp. 976-987, 2017
[4] R. Ben, Z. G. Du .Yedder, E. Bilgen, Numerical study of laminar natural convection in composite trombe wall systems, Solar & Wind Technology, Vol. 7, No. 6, pp. 675-683, 1991.
[5] G. Gan, Simulation of buoyancy-induced flow in open cavities for natural ventilation, Energy and Buildings, Vol. 38, pp. 410–420, 2006.
[6] A. Mezrhab, M. Rabhi, Modeling of the thermal transfers in an enclosure of the trombe wall type, Thermodynamic Analysis in Renewable Energy, Vol. 10, No. 62, pp. 9-14, 2008
[7] S. Kim, J. Seo, An influence of the opening location of the trombe wall system on indoor airflow and thermal environment, National Research Foundation of Korea, Gwangju 501-759, Korea pp. 1-6, 2012.
[8] A. P. Haghighi, M. Maerefat, Solar ventilation and heating of buildings in sunny winter days usingsolar chimney, Sustainable Cities and Society, Vol. 10, pp. 72–79, journal ISSN: 2210-6707, February 2014.
[9] M. S. Ahmed, M. Attalla, Experimental studyof passive solar cooling in hot arid regions using trombe walls with humidification, Advances in Fluid Mechanics and Heat & Mass Transfer, Proceedings of the 10th WSEAS International Conference on Heat Transfer, Thermal Engineering and Environment (HTE '12), pp. 29-34, 2012.
[10] A. Y. K. Tan, N. H. Wong, Parameterization studies of solar chimneys in the tropics, Energies, Vol. 6, pp. 145-163, 2013.
[11] K. Darkwa, P. O. Callaghan, Simulation of phase change drywalls in a passive solar building, Applied Thermal Engineering, Vol. 26, No. 8–9, pp. 853–858, 2006
[12] Gu. Quesada, D. Rousse, Y. Dutil, Messaoud badache, stephane halle, a comprehensive review of solar facades opaque solar facades, Renewable and Sustainable Energy Reviews, Vol. 16 , pp. 2820– 2832, 2012.
[13] J. Onishi, H. Soeda, M. Mizuno, Numerical study on a low energy architecture based upon distributed heat storage system, Renewable Energy, Vol. 22, No. 1–3, pp. 61–66, 2001.
[14] Y. Li, X. Duanmu, Y. Sun, J. Li, H. Jia, Study on the air movement character in solar wall system, Building Simulation 2007, College of Architecture and Civil Engineering, Beijing University of Technology, Beijing, 100022, China, pp. 927–931, 2007
[15] A. Fares, The effect of changing trombe wall component on the thermal load, Energy Procedia, Vol. 19, pp. 47–54, https://doi.org/10.1016/j.egypro.2012.05.181, 2012.
[16] P. Torcellini, S. Pless, Trombe walls in low-energy buildings: practical experiences, National Renewable Energy Laboratory, NREL/CP-550-36277, pp. 1-8, July 2004
[17] M. Rabani, V. Kalantar, M. Rabani, Heat transfer analysis of a Trombe wall with a projecting channel design, Energy, Vol. 134, pp. 943-950, 2017
[18] M. J. Galal, S. F. Sajda, Simulation of trombe wall in Baghdad atmosphere, Solar Energy, 5th Conference on Energy Conservation in Building, At Tehran, Iran, pp. 66-71, 2006.
[19] S. A. Fanaee, M. Rezaei, The investigation of appendages vortex effect on the main working parameter of the tube - finned heat exchanger, tabriz Mechanical Engineering, Vol. 47, No. 3, pp. 333–338, 2017. (in (فارسی Persian
[20] L. G. Berglund, R. R. Gonzalez, Application of acceptable temperature drifts to built environments as a mode of energy conservation, , American Society of Heating, Refrigerating and Air Conditioning Engineers, Atlanta, USA, ASHRAE Transactions, Vol. 84,No.1, pp. 110-121, 1978.
[21] M. Culloch Warren, W. Pitts, A logical calculus of ideas immanent in nervous activity, Bulletin of Mathematical Biophysics, Vol. 4, No. 5, pp. 115–133, 1943.
[22] J. S. R. Jang, ANFIS: Adaptive-network-based fuzzy inference system, IEEE transactions on systems, man and cybernetics, Department of Electrical Engineering and Computer Science, California University., Berkeley, CA, USA, Vol. 23, No. 3, pp. 665– 685, Issue: 3, 1993
[23] J. M. Mendel, Uncertain rule-based fuzzy logic systems: introduction and new directions, Prentice Hall PTR Upper Saddle River, NJ 07458, pp. 1-576, ISBN 0-13-040969-3, www.phptr.com, 2001
[24] D. W. Marquardt, An algorithm for the least-squares estimation of nonlinear parameters, SIAM Journal of Applied Mathematics, Vol. 11, No. 2, pp. 431– 441, Jun, 1963.