مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

ارزیابی غیر مخرب حرارت نگاری مادون‌قرمز مدوله‌شده در عیب‌یابی مواد مرکب زمینه پلیمری

نویسندگان
1 گروه مهندسی ساخت و تولید، مهندسی مکانیک، دانشگاه تربیت مدرس، تهران
2 استادیار- دانشکده مهندسی مکانیک - دانشگاه تربیت مدرس
3 دانشیار دانشگاه تربیت مدرس تهران مدیر گروه مهندسی ساخت وتولید
چکیده
در این مقاله به ارزیابی حرارت‌نگاری مادون‌ قرمز مدوله‌شده در شناسایی عیوب زیر سطحی مواد مرکب زمینه پلیمری پرداخته شده است. در این روش به منظور تحریک نمونه، شار حرارتی به ‌صورت متناوب به سطح قطعه اعمال‌شده و پاسخ حرارتی به ‌وسیله تبدیل فوریه پردازش و تصاویر دامنه و فاز استخراج می‌شوند. پس‌زمینه غیریکنواخت مشاهده‌شده در تصاویر حاصل، اغلب قدرت تشخیص را پایین می‌آورد لذا برای بهبود ارزیابی این روش، فیلتر آشکارساز لبه و ریخت‌شناسی توصیفی بر روی تصاویر اعمال می‌گردد. بررسی تجربی در فرکانس‌های مختلف بر روی نمونه‌های ساخته‌شده با نقص‌های کنترل‌شده رایج در مواد مرکب صورت گرفت. از تحلیل نتایج برای تعیین دقیق موقعیت و ابعاد عیوب استفاده و مشاهده شد که در نمونه‌های با ضخامت 2 میلی‌متر نقص جدایش بین لایه‌ای با حداقل اندازه 20*10 میلی متر و نقص‌های الیاف خشک و نفوذ مواد ناخواسته با حداقل اندازه 50*40 میلی‌متر شناسایی و اندازه‌گیری می‌شوند. در تحلیل اجزای محدود هندسه و عیوب به کار برده شده در آزمون تجربی، در نظر گرفته شد. مشاهده شد که نتایج ارزیابی اجزای محدود با ارزیابی تجربی مطابقت داشته و می‌تواند در یافتن متغیرهای بهینه در بررسی حرارت‌نگاری مادون‌ قرمز مدوله‌شده در عیب‌یابی مواد مرکب به کار گرفته شود.
کلیدواژه‌ها

عنوان مقاله English

Non-destructive Investigation of Modulated Infrared Thermography in Evaluation of Subsurface Defects in Polymer Matrix Composites

نویسندگان English

karim jamali 1
Davood Akbari 2
mohammad Golzar 3
1 Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
2 Mechanical engineering-tarbiat modares university
3 Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
چکیده English

In this paper, an investigation was done on modulated IR thermography for detection and evaluation of artificial subsurface defects in composite materials. In this method, In order to stimulate the test specimen, the heat flux is applied periodically over the surface of the specimen and the thermal response is decomposed by the Fourier transform method in order to extract its amplitude and phase images. The non-uniform backgrounds in the obtained images often reduce detection ability, In order to improve the evaluation of this method, an edge detection filter and a morphological attribute profile were applied to the images. Experimental investigations were applied for different frequencies on specimens made with common controlled defects in composite materials. Interpretation of the results were utilized in the calculation of defects’ size and location, it was observed that in specimen with 2 mm thickness delamination defect with a minimum size of 20*10 mm, dry fiber and inclusion defects with a minimum size of 50*40 mm is detected and is measured. The same geometry and the artificial defects used in experiments, were considered in the finite element analysis. The results of finite element analysis were found to have an agreement with the experimental results and can be used to find the optimum parameters in investigation of modulated IR thermography for detection of defects on composites.

کلیدواژه‌ها English

Non-destructive test
Thermography
Modulation
Composites
[1] C. Boller, W. Staszewski, G. R. Tomlinson, Health Monitoring of Aerospace Structures: Smart Sensor Technologies and Signal Processing, pp. 15-35, J. Wiley, 2004.
[2] H. A. Thajeel, Numerical Modeling of Infrared Thermography Techniques via ANSYS, Missouri University of Science and Technology, 2014.
[3] C. Ibarra-Castanedo, M. Genest, S. Guibert, J. M. Piau, X. P. Maldague, A. Bendada, Inspection of aerospace materials by pulsed thermography, lock-in thermography and vibrothermography: A comparative study, Proceedings of The SPIE Conference, Canada, June 16-24, 2007.
[4] M. Dalla Mura, J. A. Benediktsson, B. Waske, L. Bruzzone, Morphological attribute profiles for the analysis of very high resolution images, IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 10, pp. 3747- 3762, 2010.
[5] F. Mabrouki, M. Genest, G. Shi, A. Fahr, Numerical modeling for thermographic inspection of fiber metal laminates, NDT & E International, Vol. 42, No. 7, pp. 581-588, 2009.
[6] G. Busse, Optoacoustic phase angle measurement for probing a metal, Applied Physics Letters, Vol. 35, No. 10, pp. 759-760, 1979.
[7] C. Meola, G. M. Carlomagno, L. Giorleo, Geometrical limitations to detection of defects in composites by means of infrared thermography, Nondestructive Evaluation, Vol. 23, No. 4, pp. 125-132, 2004.
[8] M. Choi, K. Kang, J. Park, W. Kim, K. Kim, Quantitative determination of a subsurface defect of reference specimen by lock-in infrared thermography, Ndt & E International, Vol. 41, No. 2, pp. 119-124, 2008.
[9] C. Meola, G. M. Carlomagno, A. Squillace, A. Vitiello, Non-destructive evaluation of aerospace materials with lock-in thermography, Engineering Failure Analysis, Vol. 13, No. 3, pp. 380-388, 2006.
[10] B. Lahiri, S. Bagavathiappan, P. Reshmi, J. Philip, T. Jayakumar, B. Raj, Quantification of defects in composites and rubber materials using active thermography, Infrared Physics & Technology, Vol. 55, No. 2, pp. 191-199, 2012.
[11] K. Zheng, Y. S. Chang, K. H. Wang, Y. Yao, Improved non-destructive testing of carbon fiber reinforced polymer (CFRP) composites using pulsed thermograph, Polymer Testing, Vol. 46, No.1, pp. 26-32, 2015.
[12] H. O. Ajmal, A. Crocombe, M. R. Gower, D. Jesson, S. Ogin, A comparison of the use of 3D DIC and thermography in determining the size and growth of delaminations in woven GFRP epoxy laminates, Proceedings of The 21th International Conference on on Composite Materials, Xi’an, China, August 20-25, 2017.
[13]Z. Liu, M. Genest, D. Krys, Processing thermography images for pitting corrosion quantification on small diameter ductile iron pipe, NDT & E International, Vol. 47, No. 1, pp. 105-115, 2012.
[14] R. Montanini, F. Freni, Non-destructive evaluation of thick glass fiberreinforced composites by means of optically excited lock-in thermography, Composites Part A: Applied Science and Manufacturing, Vol. 43, No. 11, pp. 2075-2082, 2012.
[15] C. Meola, G. M. Carlomagno, A. Squillace, G. Giorleo, Non-destructive control of industrial materials by means of lock-in thermography, Measurement Science and Technology, Vol. 13, No. 10, pp. 1583, 2002.
[16] J. Liu, W. Yang, J. Dai, Research on thermal wave processing of lock-in thermography based on analyzing image sequences for NDT, Infrared Physics & Technology, Vol. 53, No. 5, pp. 348-357, 2010.
[17] M. Lizaranzu, A. Lario, A. Chiminelli, I. Amenabar, Non-destructive testing of composite materials by means of active thermography-based tools, Infrared Physics & Technology, Vol. 71, No. 7, pp. 113-120, 2015.
[18] D. Bates, G. Smith, D. Lu, J. Hewitt, Rapid thermal non-destructive testing of aircraft components, Composites Part B: Engineering, Vol. 31, No. 3, pp. 175-185, 2000.
[19] S. Ranjit, K. Kang, W. Kim, Investigation of lock-in infrared thermography for evaluation of subsurface defects size and depth, Precision Engineering and Manufacturing, Vol. 16, No. 11, pp. 2255-2264, 2015.
[20] J. Schuster, D. Heider, K. Sharp, M. Glowania, Thermal conductivities of three-dimensionally woven fabric composites, Composites Science and Technology, Vol. 68, No. 9, pp. 2085-2091, 2008.
[21] J. Holman, Heat Transfer, pp. 327-350, Mcgraw-Hill series in mechanical engineering, 2009.
[22] B. Yang, Y. Huang, L. Cheng, Defect detection and evaluation of ultrasonic infrared thermography for aerospace CFRP composites, Infrared Physics & Technology, Vol. 60, No. 1, pp. 166-173, 2013.
[23] M. Kurpiński, M. Fidali, Detection of bonded joint defects by use of lock-in thermography, Measurement Automation Monitoring, Vol. 62, No. 10, pp. 333--336, 2016.
[24] Abaqus Analysis User's Guide, Accessed on 20 July 2015; http://abaqus.software.polimi.it/v6.14/index.html.
[25] C. Meola, G. M. Carlomagno, Recent advances in the use of infrared thermography, Measurement Science and Technology, Vol. 15, No. 9, pp. R27, 2004.
[26] E. J. Breen, R. Jones, Attribute openings, thinnings, and granulometries, Computer Vision and Image Understanding, Vol. 64, No. 3, pp. 377-389, 1996.
[27] C. Meola, C. Toscano, Flash thermography to evaluate porosity in carbon fiber reinforced polymer (CFRPs), Materials, Vol. 7, No. 3, pp. 1483-1501, 2014.