[1] K. P. Soldatos, Review of three dimensional dynamic analyses of circular cylinders and cylindrical shells, Applied Mechanics Reviews, Vol. 47, No. 10, pp. 501–516, 1944.
[2] H. Lamb, On the vibrations of an elastic sphere, Proceedings London Mathematical Society, Vol. 13, No. 1, pp. 189-212, 1882.
[3] C. Chree, The equations of an isotropic elastic solid in polar and cylindrical coordinates, their solutions and applications, Transactions of the Cambridge Philosophical Society, Vol. 14, pp. 250–309, 1889.
[4] Y. Sato, T. Usami, Basic study on the oscillation of a homogeneous elastic sphere, part I, frequency of the free oscillations, Geophysics Magazine, Vo. 31, No. 1, pp. 15-24, 1962.
[5] A. H. Shah, C. V. Ramakrishnan, S. K. Datta, Three dimensional and shell theory analysis of elastic waves in a hollow sphere, Part I: Analytical foundation, Journal of Applied Mechanics, Vol. 36, No. 3, pp. 431–439, 1969.
[6] J. Eskandari, Y. Mirzaei, B. Gheghlaghi, R. Avazmohamadi, Size-dependent free vibration analysis of infinite nanotubes using elasticity theory, Journal of Mechanics of Materials and Structures, Vol. 7, No. 2, pp. 137-144, 2012.
[7] Keivan Kiani, Free dynamic analysis of functionally graded tapered nanorods via a newly developed nonlocal surface energy-based integrodifferential model, Composite Structures, Vol. 139, pp. 151-166, 2016.
[8] M. R. Ilkhani, A. Bahrami, S. H. Hosseini-Hashemi, Free vibrations of thin rectangular nano-plates using wave propagation approach, Applied Mathematical Modelling, Vol. 40, No. 2, pp. 1287-1299, 2016.
[9] A. C. Eringen, Nonlocal polar elastic continua, International Journal of Engineering and Science, Vol. 10, No. 1, pp. 1-16, 1972.
[10] A. C. Eringen, Linear theory of nonlocal elasticity and dispersion of plane waves, International Journal of Engineering and Science, Vol. 10, No. 5, pp. 425-435, 1972.
[11] A. C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of Applied Physics, Vol. 54, No. 3, pp. 4703-4710, 1983.
[12] A. C. Eringen, D. G. B. Edelen, On nonlocal elasticity, International Journal of Engineering and Science, Vol. 10, No. 3, pp. 233-248, 1972.
[13] G. F. Wang, X. Q. Feng, S. W. Yu., Interface effects on the diffraction of plane compressional waves by a nano-sized spherical inclusion, Journal of Applied Physics, Vol. 102, No. 4, pp. 0435331-6, 2007.
[14] S. A. Fazelzadeh, E. Ghavanloo, Coupled axisymmetric vibration of nonlocal fluid-filled closed spherical membrane shell, Acta Mechanica, Vol. 223, No. 9, pp. 2011-2020, 2012.
[15] E. Ghavanloo, S. A. Fazelzadeh, Nonlocal elasticity theory for radial vibration of nanoscale spherical shells, European Journal of Mechanics A/Solids, Vol. 41, pp. 37-42, 2013.
[16] S. Cuenot, C. Fretigny, S. D. Champagne, B. Nysten, Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy, Physical Review B, Vol. 69, No. 16, pp. 165410-5, 2004.
[17] E. Wong, P. E. Sheehan, C. M. Lieber, Nano-beam mechanics: Elasticity, strength, and toughness of Nano-rods and nanotubes, Science, Vol. 277, No. 5334, pp. 1971-1975, 2004.
[18] M. E. Gurtin, A. I. Murdoch, A continuum theory of elastic material surfaces, Archive for Rational Mechanics and Analysis, Vol. 57, No. 4, pp. 291–323, 1975.
[19] M. E. Gurtin, J. Weissmuller, F. Larche, A general theory of curved deformable interfaces in solids at equilibrium, Philosophical Magazine A , Vol. 78, No. 5, pp. 1093–1109, 1998.
[20] V. B. Shenoy, Atomistic calculations of elastic properties of metallic fcc crystal surfaces, Physical Review B, Vol. 71, No. 9, pp. 094104-11, 2005.
[21] V. B. Shenoy, Size-dependent rigidities of nano-sized torsional elements, International Journal of Solids and Structures, Vol. 39, No. 15, pp. 4039- 4052, 2002.
[22] J. He, C. M. Lilley, Surface stress effect on bending resonance of nanowires with different boundary conditions, Applied Physics Letters, Vol. 93, No. 26, pp. 263108-3, 2008.
[23] S. M. Hasheminejad, R. Avazmohammadi, Size-dependent effective dynamic properties of unidirectional nanocomposites with interface energy effects, Composites Science and Technology ,Vol. 69, pp. 2538-2546, 2009.
[24] L.Wang,Vibration analysis of fluid-conveying nanotubes with consideration of surface effects, Physica E: Low-Dimensional Systems and Nanostructures, Vol. 43, No. 1, pp. 437-439, 2010.
[25] R. Ansari , R. Gholami, A. Norouzzadeh, M. A. Darabi, Surface stress effect on the vibration and instability of nanoscale pipes conveying fluid based on a size-dependent Timoshenko beam model, Acta Mechanica Sinica, Vol. 31, No. 5, pp. 708-719, 2015.
[26] R. Ansari, A. Norouzzadeh, R. Gholami, M. Faghih Shojaei, M. A. Darabi, Geometrically nonlinear free vibration and instability of fluid-conveying nanoscale pipes including surface stress effects, Microfluidics and Nanofluidics, Vol. 20, No. 1, pp. 28-37, 2016.
[27] R. Ansari , R. Gholami, A. Norouzzadeh, M. A. Darabi, Wave characteristics of nanotubes conveying fluid based on the non-classical Timoshenko beam model incorporating surface energies, Arabian Journal for Science and Engineering, Vol. 41, No. 11, pp. 4359-4369, 2016.
[28] R. Ansari, A. Norouzzadeh, Nonlocal and surface effects on the buckling behavior of functionally graded nanoplates: An isogeometric analysis, Physica E: Low-dimensional Systems and Nanostructures, Vol. 84, pp. 84-97, 2016.
[29] A. Norouzzadeh, R. Ansari, M. Darvizeh, Nonlinear forced vibration of axially moving Timoshenko beam in thermal environment via the harmonic balance method, Modares Mechanical Engineering, Vol. 14, No. 11, pp. 137-143, 2014. (In Persianفارسی(
[30] R. Ansari, A. Norouzzadeh, R. Gholami, Forced vibration analysis of conveying fluid carbon nanotube resting on elastic foundation based on modified couple stress theory, Modares Mechanical Engineering, Vol. 15, No. 3, pp. 27-34, 2015. (In Persianفارسی(
[31] E. Duval, A. Boukenter, B. Champagnon, Vibration eigenmodes and size of microcrystallites in glass: Observation by very-low-frequency raman scattering, Physical Review Letter, Vol. 56, No. 19, pp. 2052-2055, 1986.
[32] E. Duval, A. Boukenter, B. Champagnon, Electron-phonon coupling dynamics in very small (between 2 and 8 nm diameter) Au nanoparticles, The Journal of Chemical Physics, Vol. 112, No. 13, pp. 8613, 2000.
[33] M. Nisoli, S. De Silvestri, A. Cavalleri, A. M. Malvezzi, A. Stella, G. Lanzani, P. Cheyssac, R. Kofman, Coherent acoustic oscillations in metallic nanoparticles generated with femtosecond optical pulses, Physical Review B, Vol. 55, No. 20, pp. 13424–13427, 1997.
[34] H. E. Sauceda, D. Mongin, P. Maioli, A. Crut, M. Pellarin, N. Del Fatti, F. Vallée, I. L. Garzn, Vibrational properties of metal nanoparticles: Atomistic simulation and comparison with time-resolved investigation, The Journal of Chemical Physics C, Vol. 116, No. 47, pp. 25147–25156, 2012.
[35] C. Voisin, D. Christofilos, N. Del Fatti, F. Vallée, Environment effect on the acoustic vibration of metal nanoparticles, Physica B: Condensed Matter, Vol. 316, No. 5, pp. 89–94, 2002.
[36] J. Tian, H. Ogi, M. Hirao, Vibration analysis of an elastic-sphere oscillator contacting semi-infinite viscoelastic solids in resonant ultrasound microscopy, Journal of Applied Physics, Vol. 95, No. 12, pp. 8366-8374, 2004.
[37] T. Natsuki, J. Shi, Q. Ni, Vibration analysis of nanomechanical mass sensor using double-layered graphene sheets resonators, Journal of Applied Physics, Vol. 114, No. 9, pp. 1-6 ,2013.
[38] K. Jensen, K. Kim, A. Zettl, An atomic-resolution nanomechanical mass sensor, Nature nanotechnology, Vol. 3, pp. 533-537, 2008.
[39] Y. H. Pao, C. C. Mow, Diffraction of Elastic Waves and Dynamics Stress Concentration, pp. 420-435, New York: Crane Russak, 1973.
[40] A. C. Eringen, E. S. Şuhubi, Elastodynamics: Linear Theory, pp. 804-840, New York: Academic Press, 1975.
[41] Seyyed M. Hasheminejad, Y. Mirzaei, Exact 3D elasticity solution for free vibrations of an eccentric hollow sphere, Journal of Sound and Vibration, Vol. 330, No. 2, pp. 229-244, 2011.