مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

تحلیل عددی و مطالعه تجربی فرآیند جوشکاری اصطکاکی اغتشاشی (مطالعات موردی روی آلیاژآلومینیوم و آلیاژ فولاد)

نویسندگان
1 دانشکده مهندسی، گروه مکانیک، دانشگاه فردوسی مشهد
2 دانشیار دانشگاه فردوسی مشهد
چکیده
در این مقاله جوشکاری اصطکاکی اغتشاشی آلیاژ آلومینیوم به روش تحلیل‌ عددی و مطالعه آزمایشگاهی مد نظر قرار گرفته ادر این مقاله تحلیل‌ عددی و مطالعه تجربی جوشکاری اصطکاکی اغتشاشی مد نظر قرار گرفته است. برای حل معادلات حاکم بر رفتار مواد از روش درون‌یابی مشتق تعمیم‌یافته استفاده شده است. روش حل مذکور به عنوان روش اختلاف محدود با بالاترین مرتبه شناخته می‌شود و یکی از روش‌های فاقد شبکه است که در مقایسه با روش‌های اختلاف محدود و اجزاء محدود سرعت همگرایی بسیار بالاتری را داراست. پس از اعتبارسنجی روش تحلیل با نتایج تجربی روی آلیاژ آلومینیوم، جوشکاری اصطکاکی اغتشاشی قطعات فولادی مورد تحلیل قرار گرفته و نتایج حاصل با نتایج منتشر شده توسط دیگران مقایسه گردیده است. تحلیل‌های عددی نشان می‌دهند در سرعت دورانی بالای ابزار، فرآیند باید به صورت سه‌بعدی تحلیل شود. به منظور شناخت بهتر فرآیندهایی که روی آلیاژهای غیرمشابه صورت می‌پذیرد ویژگی‌های جوش‌کاری روی آلیاژهای آلومینیوم و فولاد به طور هم-زمان مورد توجه قرار گرفته است. نتایج نشان میدهد که رفتار ماکروسکوپیک هر دو ماده در حین عملیات جوشکاری اغتشاشی اصطکاکی مشابه است. همچنین طیف ویسکوزیته در محدوده‌ی دمای خمیری تا ذوب حاکی از سیالیت بالای فولاد است و برای جوشکاری آن می‌توان از نسبت سرعت دورانی به سرعت خطی (ω/v) بالاتری در مقایسه با آلومینیوم استفاده نمود؛ بنابراین هنگام اتصال آلیاژهای آلومینیوم و فولاد باید نسبت سرعت مناسب بر اساس این موضوع تنظیم شود.
کلیدواژه‌ها

عنوان مقاله English

Numerical analysis and experimental study on friction stir welding (Case studies on aluminum alloy and mild steel)

نویسنده English

Mohammad Reza Ojnordy 1
1 Department of Engineering, Ferdowsi University of Mashhad, Iran
چکیده English

In this paper, numerical analysis and experimental study on Friction Stir Welding (FSW) is considered. Generalized Differential Quadrature (GDQ) method was used to solve the equations of the material flow during the process. This method which is known as the highest-order finite difference scheme is one of the meshless method and has a very high convergence speed respect to ordinary finite difference and finite element methods. After validating the application of this procedure with the results of experiments on aluminium alloy, friction stir welding of mild steel considered and the results compared with the published results of other researchers. Numerical analyses show that at high rotational speed of the welding tool the analysis of the process should be done in 3-dimentional framework. The results of FSW on aluminum features along with the welding results on steel ones considered in order to better understanding of the process nature of dissimilar alloys. Results of this study show that the macroscopic behavior of both materials during friction stir welding is the same. Furthermore, viscosity spectrum shows high fluidity of steel in the range of solidity to melting temperatures, so the ratio of rotational to welding speeds (ω/v) in friction stir welding of steel work pieces could be higher which it should be mentioned whenever joining of aluminium to mild steel work pieces is planned.

کلیدواژه‌ها English

Friction Stir Welding
Generalized differential quadrature method
Navier-Stokes equation
Mild Steel
Aluminum alloy
[1] Friction stir welding-invention, innovations and applications, Accessed on 14 May 2016; https://www.twi-global.com/technical-knowledge/publishedpapers/friction-stir-welding-invention-innovations-and-applications-march2001.
[2] R. S. Mishra, Z. Y. Ma, Friction stir welding and processing, Material Science and Engineering, Vol. 50, No. 3, pp. 1–78, 2005.
[3] H. Wang, P. A. Colegrove, J. F. dos Santos, Numerical investigation of the tool contact condition during friction stir welding of aerospace aluminium alloy, Computational Materials Science, Vol. 71, No.7, pp. 101–108, 2013.
[4] T. Siedel, A. P. Reynolds, Two-dimensional friction stir welding process model based on fluid mechanics, Science and Technology of Welding and Joining, Vol. 8, No. 4, pp. 175–183, 2003.
[5] P. A. Colegrove, H. Schercliff, Development of Trivex friction stir welding tool; Part 2–Three-dimensional flow modeling, Science and Technology of Welding and Joining, Vol. 9, No. 11, pp. 352–361, 2004.
[6] P. Ulysse, Three-dimensional modeling of the friction stir-welding process, International Journal of Machine Tools and Manufacturing, Vol. 42, No. 23, pp. 1549–1557, 2002.
[7] R. Nandan, G. G. Roy, T. J. Lienert, T. Debroy, Three-dimensional heat and material flow during friction stir welding of mild steel, Acta Materiala, Vol. 55, No. 12, pp. 883–895, 2007.
[8] D. Ghahremani Moghadam, K. Farhang Doost, A. Rastegar, M. Raezani Moghaddam, Tool’s speed effect on hardness and residual stress in friction stir welded Al 2024-T351: Experimental method and Numerical simulation, Modares Mechanical Engineering, Vol. 15, No. 2, pp. 61–71, 2015. (In (فارسی Persian
[9] S. Fouladi, M. Abbasi, M. Givi, Friction stirs vibration welding and study about the effects of its parameters on microstructure and mechanical properties of Al5052 joint, Modares Mechanical Engineering, Vol. 17, No. 4, pp. 217–224, 2017. (In Persian فارسی(
[10] X. He, F. Gu, A. Ball, A review of numerical analysis of friction stir welding, Progress in Material Science, Vol. 65, No. 1, pp. 1–66, 2014.
[11] R. Bellman, J. Casti, Differential quadrature and long-term integration, Journal of Mathematical Analysis and Applications, Vol. 34, No. 2, pp. 235 – 238, 1971.
[12] R. Bellman, B. G. Kashef, J. Casti, Differential quadrature: A technique for the rapid solution of nonlinear partial differential equations, Journal of Computational Physics, Vol. 10, No. 1, pp. 40–52, 1972.
[13] C. Shu, Differential Quadrature and its Application in Engineering, pp. 25- 68, London: Springer-Verlag, 2000.
[14] J. Hattel, H. Schmidt, C. Tutum, Thermomechanical modelling of friction stir welding, ASM Proceeding of International Conference: Trends in Welding Researches, Vol. 1, No. 1, pp. 1–10, 2009.
[15] T. J. Lienert, W. L. Stellwag, B. B. Grimmett, R. W. Warke, Friction stir welding studies on mild steel, Welding Research, Vol. 82, No. 1, pp. 1s–9s, 2003.
[16] M. Nourani, Integrated Multiphisics Modeling, Testing and Optimization of Friction Stir Welding of Aluminum Alloys, PhD Thesis, University of British Columbia, British Columbia , 2014.
[17] C. M. Sellars, W. J. M. Tegart, On the mechanism of hot deformation, Acta Metallurgica, Vol. 14, No. 10, pp. 1136–1138, 1966.
[18] C. Shu, B. C. Khoo, K. S. Yeo, and Y. T. Chew, Application of GDQ scheme to simulate natural convection in a square cavity, International Communication in Heat and Mass Transfer, Vol. 21, No. 6, pp. 809–817, 1994.
[19] H. Lomax, T. Pulliam, D. Zingg, and T. Kowalewski, Fundamentals of Computational Fluid Dynamics, pp. 7-18, Berlin: Springer-Verlag, 2001.
[20] C. Vuik, A. Segal, Solution of the coupled Navier-Stokes equations, W. Hackbusch, G. Wittum (Eds.), Numerical Treatment of Coupled Systems, pp. 186-197, Wiesbaden: Vieweg+Teubner Verlag, 1995.
[21] A. Simar, A Multyscale Multiphysics Investigation of Aluminum Friction Stir Welds, PhD Thesis, Department of Applied Sciences, University of Leuven, Leuven, 2006.
[22] T. Long, A. P. Reynolds, Parametric studies of friction stir welding by commercial fluid dynamics simulation, Science and Technoogy of Welding and Joining, Vol. 11, No. 2, pp. 200–209, 2006.
[23] G. Mathers, Welding of Aluminum and its Alloys, pp. 12-68, Witney (UK): Woodhead Publishing Limited, 2002.
[24] A. Fallahi Arezoudar, A. Hosseini, Optimization of friction stir welding parameters of dissimilar AA5052 and AA6061-T6 joint for achieving optimum microstructure and mechanical properties, Modares Mechanical Engineering, Vol. 17, No. 7, pp. 20–30, 2017. (In Persian فارسی(
[25] A. P. Reynolds, Flow visualization and simulation in FSW, Scripta Materialia, Vol. 58, No. 5, pp. 338–342, 2008.
[26] C. A. Hernández, V. H. Ferrer, J. E. Mancilla, L. C. Martínez, Threedimensional numerical modeling of the friction stir welding of dissimilar steels, The International Journal of Advanced Manufacturing Technology, Vol. 1, No. 1, pp. 1–15, 2017.
[27] A. De, H. K. D. H. Bhadeshia, T. Debroy, Friction stir welding of mild steel: Tool durability and steel microstructure, Material Science and Technology, Vol. 30, No. 3, pp. 1050–1056, 2014.
[28] D. Micallef, D. Camilleri, A. Toumpis, A. Galloway, L. Arbaoui, Local heat generation and material flow in friction stir welding of mild steel assemblies, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, Vol. 230, No. 2, pp. 586–602, 2016.