[1] D. Hussein, H. Gitano-Briggs, M. Addullah, Design analysis and performance prediction of the cardiac axial blood pump, Research Journal of Biological Sciences, Vol. 4, No. 6, pp. 637-643, 2009.
[2] K. H. Fraser, M. E. Taskin, B. P. Griffith, Z. J. Wu, The use of computational fluid dynamics in the development of ventricular assist devices, Medical Engineering & Physics, Vol. 33, No. 3, pp. 263-280, 2011.
[3] W. Chan, Y. Wong, Y. Ding, L. Chua, S. Yu, Numerical investigation of the effect of blade geometry on blood trauma in a centrifugal blood pump, Artificial Organs, Vol. 26, No. 9, pp. 785-793, 2002.
[4] X. Song, A. L. Throckmorton, H. G. Wood, J. F. Antaki, D. B. Olsen, Quantitative evaluation of blood damage in a centrifugal VAD by computational fluid dynamics, Journal of Fluids Engineering, Vol. 126, No. 3, pp. 410-418, 2004.
[5] X. Song, H. G. Wood, D. Olsen, Computational fluid dynamics (CFD) study of the 4th generation prototype of a continuous flow ventricular assist device (VAD), Transactions-American Society of Mechanical Engineers Journal of Biomechanical Engineering, Vol. 126, No. 2, pp. 180-187, 2004.
[6] H. Tsukamoto, H. Ohashi, Transient characteristics of a centrifugal pump during starting period, Journal of Fluids Engineering, Vol. 104, No. 1, pp. 6- 13, 1982.
[7] Z. Li, D. Wu, L. Wang, B. Huang, Numerical simulation of the transient flow in a centrifugal pump during starting period, Journal of Fluids Engineering, Vol. 132, No. 8, pp. 081102, 2010.
[8] F. Hu, X. Ma, D. Wu, L. Wang, Transient internal characteristic study of a centrifugal pump during startup process, Proceeding of, IOP Publishing, pp. 04, 2016.
[9] H. Niroomand-Oscuii, M. Koochaki, E. Nammakie, An innovative method for generating pulsatile blood flow via an axial ventricular assist device, Biomedical Engineering: Applications, Basis and Communications, Vol. 27, No. 03, pp. 1550026, 2015.
[10] M. Nishida, T. Negishi, D. Sakota, R. Kosaka, O. Maruyama, T. Hyakutake, K. Kuwana, T. Yamane, Properties of a monopivot centrifugal blood pump manufactured by 3D printing, Journal of Artificial Organs, Vol. 19, No. 4, pp. 322-329, 2016.
[11] M. E. Taskin, K. H. Fraser, T. Zhang, C. Wu, B. P. Griffith, Z. J. Wu, Evaluation of Eulerian and Lagrangian models for hemolysis estimation, ASAIO Journal, Vol. 58, No. 4, pp. 363-372, 2012.
[12] Y. Zhang, S. Xue, X. M. Gui, H. S. Sun, H. Zhang, X. D. Zhu, S. S. Hu, A novel integrated rotor of axial blood flow pump designed with computational fluid dynamics, Artificial Organs, Vol. 31, No. 7, pp. 580-585, 2007.
[13]I. Demirdžić, M. Perić, Finite volume method for prediction of fluid flow in arbitrarily shaped domains with moving boundaries, International Journal for Numerical Methods in Fluids, Vol. 10, No. 7, pp. 771-790, 1990.
[14] K. H. Fraser, T. Zhang, M. E. Taskin, B. P. Griffith, Z. J. Wu, A quantitative comparison of mechanical blood damage parameters in rotary ventricular assist devices: Shear stress, exposure time and hemolysis index, Journal of Biomechanical Engineering, Vol. 134, No. 8, pp. 081002, 2012.
[15] L. Wurzinger, R. Opitz, H. Eckstein, Mechanical bloodtrauma, An overview, Angeiologie, Vol. 38, No. 3, pp. 81-97, 1986.
[16] M. Giersiepen, L. Wurzinger, R. Opitz, H. Reul, Estimation of shear stressrelated blood damage in heart valve prostheses--in vitro comparison of 25 aortic valves, The International Journal of Artificial Organs, Vol. 13, No. 5, pp. 300-306, 1990.
[17] C. Bludszuweit, Three‐Dimensional numerical prediction of stress loading of blood particles in a centrifugal pump, Artificial Organs, Vol. 19, No. 7, pp. 590-596, 1995.
[18] T. Zhang, M. E. Taskin, H. B. Fang, A. Pampori, R. Jarvik, B. P. Griffith, Z. J. Wu, Study of flow‐induced hemolysis using novel couette‐type blood‐shearing devices, Artificial organs, Vol. 35, No. 12, pp. 1180-1186, 2011.
[19] J. Apel, R. Paul, S. Klaus, T. Siess, H. Reul, Assessment of hemolysis related quantities in a microaxial blood pump by computational fluid dynamics, Artificial Organs, Vol. 25, No. 5, pp. 341-347, 2001.