[1] F. Hauksbee, Physico-Mechanical Experiments on Various Subjects, First Edition, pp. 46-47, London: Brugis, 1709.
[2] I. Newton, Optics, pp. 25-27, London: Printers to the Royal Society, 1718.
[3] A. P. Chattock, On the velocity and mass of the ions in the electricwind in air, Philosophical Magazine, Vol. 48, No. 294, pp. 401–420, 1899.
[4] D. J. Harney, An Aerodynamic Study of the Electric Wind, PhD Thesis, California Institute of Technology, Pasadena, CA, USA ,1957.
[5] J. L. Davis, J. F. Hoburg, Wire-duct precipitator field and charge computation using finite element and characteristics methods, Journal of Electrostatics, Vol. 14, No. 2, pp. 187–199, Aug. 1983.
[6] H. Bondar, F. Bastein, Effect of neutral fluid velocity on direct conversion from electric to fluid kinetic energy inan electro-fluid-dynamic device Journal of Physics D: Applied Physics, Vol. 19, No. 9, pp. 1657-1663, 1986.
[7] N. E. Jewell-Larsen, S. V. Karpov, I. A. Krichtafovitch, V. Jayanty, C. P. Hsu, A. V. Mamishev, Modeling of corona-induced electrohydrodynamic flow with COMSOL multiphysics, Proceedings ESA Annual Meeting on Electrostatics, Minneapolis, Minnesota, June 17-19, 2008.
[8] D. F. Colas, A. Ferret, D. Z. Pai, D. A. Lacoste, C. O. Laux, Ion wind generation by a wire-cylinder-plate corona discharge in air at atmospheric pressure, Journal of Applied Physics, Vol. 108, No. 10, pp. 1-6, 2010.
[9] E. Moreau, N. Benard, J. D. Lan-Sun-Luk, J. P. Chabriat, Electrohydrodynamic force produced by a wire-to-cylinder dc corona discharge in air at atmospheric pressure, Journal of Physics D Applied Physics, Vol. 46, No. 47, pp. 1-14, 2013.
[10] E. Moreau, N. Benard, F. Alicalapa, A. Douyère, Electrohydrodynamic force produced by a corona discharge between a wire active electrode and several cylinder electrodes. application to electric propulsion, Journal of Electrostatics, Vol. 76, pp. 194–200, 2015.
[11] K. Kiousis, N. A. X. Moronis, W. G. Fruh, Electro-Hydrodynamic (EHD) thrust analysis in Wire–Cylinder electrode arrangement, Plasma Science and Technology, Vol. 16, No. 4, pp. 363–369, 2014.
[12] C. K. Gilmore, S. R. H. Barrett, Electrohydrodynamic thrust density using positive corona-induced ionic winds for in-atmosphere propulsion, Proceedings of Royal Society A, Vol. 471. No. 2175, pp. 1-24, 2015.
[13] H. Shibata, Y. Watanabe, K. Suzuki, Performance prediction of electrohydrodynamic thrusters by the perturbation method, Physics of Plasmas, Vol. 23, No. 5, pp. 1-7, 2016.
[14]K. Masuyama, S. R. Barrett, On the performance of electrohydrodynamic propulsion, The Royal Society A, Vol. 469, No. 2154, 2013.
[15] V. H. Granados, M. J. Pinheiro, P. A. Sá, Electrostatic propulsion device for aerodynamics applications, Physics of Plasmas, Vol. 23, No. 7, pp. 1-11, 2016.
[16]W. Wang, L. Yang, K. Wu, C. Lin, P. Huo, S. Liu, D. Huang, M. Lin, Regulation-controlling of boundary layer by multi-wire-to-cylinder negative corona discharge, Applied Thermal Engineering, Vol. 119, pp.438-448, 2017.
[17] F. W. Peek, Dielectric Phenomena in High Voltage Engineering, pp. 8-38, New York: McGraw-Hill Book Company, 1920.
[18] C. G. Petra, O. Schenk, M. Anitescu, Real-time stochastic optimization of complex energy systems on high-performance computers, IEEE Computing in Science & Engineering, Vol. 16, No. 5, pp. 32-42, 2014.