مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

شبیه‌سازی الحاق مایل جفت حباب با استفاده از روش لول‌ست

نویسندگان
1 استادیار پایه 7 دانشگاه آزاد اسلامی
2 دانشگاه‌ تخصصی فناوری‌های نوین آمل
3 دانشیار دانشگاه تربیت مدرس
چکیده
در پژوهش حاضر برهمکنش و الحاق مایل جفت حباب تحت نیروی شناوری، بصورت عددی شبیه سازی شده است. معادلات حاکم بر مسئله شامل معادلات پیوستگی و مومنتوم می‌باشند که برای حل این معادلات، از روش حجم محدود و الگوریتم سیمپل استفاده شده است. برای مدلسازی مرز مشترک دوفاز نیز از روش تسخیر مرز لول‌ست استفاده شده است. مهم‌ترین ضعف روش لول‌ست عدم بقای جرم فاز گسسته به ویژه در مسائل با تغییرات شدید مرز مشترک می‌باشد که برای کنترل این خطای جرمی، از معادلات بازسازی لول‌ست به همراه یک حلقه کنترل هندسی بقای جرم که برای اولین بار برای روش لول‌ست در این پژوهش ارایه شده، استفاده گردیده است. با استفاده از حلقه کنترل هندسی جرم معرفی شده، مشکل خطای عددی کسر جرم روش لول‌ست برای مطالعه الحاق حباب‌ها که در آن تغییر شکل‌ها شدید می‌باشد، برطرف شده است. مقایسه نتایج حاصل از شبیه سازی عددی پژوهش حاضر با نتایج تجربی مشابه، همخوانی خوب بین آن‌ها را نشان می‌دهد. همچنین بررسی خطای کسر جرمی روش عددی ارایه شده برای شبیه سازی عددی الحاق مایل حباب‌ها نشان می‌دهد که حداکثر مقدار این خطا، کمتر از 4% است. بنابراین روش لول‌ست به همراه حلقه کنترل جرم ارائه شده، به خوبی برای مدلسازی عددی برهمکنش و الحاق مایل حباب‌ها می‌تواند مورد استفاده قرار گیرد.
کلیدواژه‌ها

عنوان مقاله English

Simulation of oblique coalescence of a pair of bubbles using Level Set method

نویسندگان English

Amin Hadidi 1
Majid Eshagh Nimvari 2
mohamadreza ansari 3
1 Department of Mechanical Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran
2 Amol University of Special Modern Technologies
3 -tarbiat modares university
چکیده English

In this research, interaction and oblique coalescence of bubbles under buoyancy force was simulated, numerically. The governing equations are continuity and momentum equations which have been discretized using the finite volume method and the SIMPLE algorithm. For simulating the interface of two phases, the level set method has been incorporated. Level Set method suffers from poor mass conservation of dispersed phase especially in the case of severe deformation of interface. In order to control of mass conservation of the level set method, re-initialization equations and a geometric mass control loop are used which this loop is implemented in the level set method for the first time in this research. Using proposed geometric mass control loop, mass dissipation drawback of the level set method is handled in simulation of bubbles’ coalescence. The results outlined in the present study well agree with the existing experimental results. Also results of investigation of mass dissipation of the proposed scheme to simulation of oblique coalescence problem show that the maximum amount of this mass dissipation was less than 4%. Therefore, the level set method with proposed geometric mass control loop could be used properly for simulation of oblique interactions and coalescence of bubbles in multiphase flows.

کلیدواژه‌ها English

Oblique coalescence
interaction of bubbles
Level set method
geometrical mass control
[1] A.R. Sarhan, J. Naser, G. Brooks, Effects of particle size and concentration on bubble coalescence and froth formation in a slurry bubble column, Particuology, Vol. 36, No. 1, pp. 82-95, 2018.
[2] A. Hadidi, M. R. Ansari, Magnetic field effects on a bubble behavior in twophase flow by using a Level Set method, Modares Mechanical Engineering, Vol. 12, No. 1, pp. 1-10, 2011. (in Persian فارسی(
[3] W. Abbassi, S. Besbes, M. Elhajem, H. Ben Aissia, J.Y. Champagne, Numerical simulation of free ascension and coaxial coalescence of air bubbles using the volume of fluid method (VOF), Computers & Fluids, Vol. 161, No. 1, pp. 47-59, 2018.
[4] H. Yuan, A. Prosperetti, On the in-line motion of two spherical bubbles in a viscous fluid, Fluid Mechanics, Vol. 278, No. 1, pp. 325–349, 1994.
[5] T. Sanada, M. Watanabe, T. Fukano, Effects of viscosity on coalescence of a bubble upon impact with a free surface, Chemical Engineering Science, Vol. 60, No. 1, pp. 5372–5384, 2005.
[6] J. Katz, C. Meneveau, Wake-Induced relative motion of bubbles rising in line, Multiphase Flow, Vol. 22, No. 1, pp. 239–258, 1996.
[7] M. SintAnnaland, N. G. Deen, J. A. M. Kuipers, Numerical simulation of gas bubbles behaviour using a three-dimensional volume of fluidmethod, Chemical Engineering Science, Vol. 60, No. 1, pp. 2999 – 3011, 2005.
[8] A. Hadidii, Effects of Magnetic Field on a Single Bubble in Two-Phase Bubbly Flow by Using a Level Set Method, MSc Thesis, Department of Mechanical Engineering, Tarbiat Modares University, Tehran, 2011. (in (فارسی Persian
[9] A. Gupta, R. Kumar, Lattice Boltzmann simulation to study multiple bubble dynamics, Heat and Mass Transfer, Vol. 51, No. 1, pp. 5192–5203, 2008.
[10] P.C. Duineveld, Bouncing and coalescence of bubble pairs rising at high reynolds number in pure water or aqueous surfactant solutions, Applied Scientific Research, Vol. 58, No. 1, pp. 409–439, 1998.
[11] D. Legendre, J. Magnaudet, G. Mougin, Hydrodynamic interactions between two spherical bubbles rising side by side in a viscous liquid, Fluid Mechanics, Vol. 497, No. 1, pp. 133–166, 2003.
[12] T. Sanada, A. Sato, M. Shirota, M. Watanabe, Motion and Coalescence of a Pair of Bubbles Rising Side by Side, Chemical Engineering Science, Vol. 64, No. 1, pp. 2659–2671, 2009.
[13] A. Hadidii, Numerical study of external uniform magnetic field effect on interaction of two bubbles in a viscous fluid column, PhD Thesis, Department of Mechanical Engineering, Sahand University of Technology, Tabriz, 2015. (in Persian فارسی(
[14] A. Hadidi, Numerical study of the uniform magnetic field effect on the interaction of bubbles in viscous liquid column, Modares Mechanical Engineering, Vol. 15, No. 11, pp. 293-302, 2015. (in Persian فارسی(
[15] A. Hadidi, Numerical simulation of dielectric bubbles coalescence under the effects of uniform magnetic field, Theoretical and Computational Fluid Dynamics, Vol. 30, No. 3, pp. 165-184, 2016.
[16] R.H. Chen, G. H. Su, S.Z. Qiu, Y. Ishiwatari, Y. Oka, Numerical investigation on coalescence of bubble pairs rising in a stagnant liquid, Chemical Engineering Science, Vol. 66, No. 1, pp. 5055–5063, 2011.
[17] X. Miao, D. Lucas, Z. Ren, S. Eckert, G. Gerbeth, Numerical modeling of bubble-driven liquid metal flows with external static magnetic field, Multiphase Flow, Vol. 48, No. 1, pp. 32–45, 2013.
[18] D. Bothe, VOF-simulations of fluid particle dynamics, Proceedings of the 11th Workshop on Two-Phase Flow Predictions, Merseburg, Germany, pp. 1-13, 2005.
[19] M. Ohta, T. Imura , Y. Yoshida , M. Sussman, A computational study of the effect of initial bubble conditions on the motion of a gas bubble rising in viscous liquids, Multiphase Flow, Vol. 31, No. 1, pp. 223–237, 2005.
[20] A. Hadidi, M.R. Ansari, Numerical Study of Bubbly Two-Phase Flow under Magnetic Field Effect by Using a Level Set Method, Proceedings of the 3rd International Conference on Thermal Power Plants (IEEE), Tehran, Iran, October 18-19, 2011. (In Persian فارسی(
[21] M. R. Ansari, M. E. Nimvari, Bubble viscosity effect on internal circulation within the bubble rising due to buoyancy using the level set method, Annals of Nuclear Energy, Vol. 38, No. 1, pp. 2770–2778, 2011.
[22] M. Sussman, E. Fatemi, P. Smereka, S. Osher, An improved level set method for incompressible tow-phase flows, Computers & Fluids, Vol. 27, No. 1, pp. 663-680, 1998.
[23] M. R. Ansari, A. Hadidi, M. E. Nimvari, Effect of a uniform magnetic field on dielectric two-phase bubbly flows using the level set metfhod, Magnetism and Magnetic Materials, Vol. 324, No. 1, pp. 4094–4101, 2012.
[24] E. Marchandise, P. Geuzaine, N. Chevaugeon, J. Remacle, A stabilized finite element method using a discontinuous level set approach for the computation of bubble dynamics, Computational Physics, Vol. 225, No. 1, pp. 949–974, 2007.
[25] J.U. Brackbill, C. Kothe, D.B. Zemach, A continuum method for modeling surface tension, Computational Physics, Vol. 100, No. 2, pp. 335–354, 1992.
[26] S. Osher, R. Fedkiw, Level Set methods and dynamic implicit surfaces, pp. 23-37, New York: Springer, 2003.
[27] K. B. Deshpande, W. B. Zimmerman, Simulation of interfacial mass transfer by droplet dynamics using the level set method, Chemical Engineering Science, Vol. 61, No. 1, pp. 6486-6498, 2006.
[28] M. T. Mehrabani, M. R. Heyrani Nobari, A numerical study of bubbly flow in a curved duct using front tracking method, Modares Mechanical Engineering, Vol. 16, No. 2, pp. 179-188, 2016. (in Persian فارسی(
[29] J. Hua, J. Lou, Numerical simulation of bubble rising in viscous liquid, Computional Physiscs, Vol. 222, No. 1, pp. 769-795, 2007.
[30] A. Hadidi, M. R. Ansari, Effects of magnetic field direction and strength on square lid-driven cavity flow, Fluid Mechanics and Aerospace Scientific Research Journal, Vol. 1, No. 2, pp. 85-98, 2013. (in Persian فارسی(
[31] J. H. Ferziger, M. Peric, Computational methods for fluid dynamics, Third Edition, pp. 71-89, Berlin: Springer, 2002.
[32] S. Shin, D. Juric, Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity, Computational Physics, Vol. 180, No. 1, pp. 427-470, 2002.
[33] S. Popinet, S. Zaleski, A front-tracking algorithm for accurate representation of surface tension, Numerical Methods in Fluids, Vol. 30, No. 1, pp. 775-793, 1999.
[34] A. Hadidi, Effects of uniform magnetic field on the interaction of side-byside rising bubbles in a viscous liquid, Chemical Engineering, Vol. 33, No. 3, pp. 795-805, 2016.
[35] G. Brereton, D. Korotney, Coaxial and oblique coalescence of two rising bubbles, Proceedings of the ASME Applied Mechanics Conference, Ohio: ASME, pp. 30-47, 1991.
[36] S. Anwar, Lattice Boltzmann modeling of buoyant rise of single and multiple bubbles, Computers & Fluids, Vol. 88, No. 1, pp.430–439, 2013